img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 106
всего попыток: 127
Задача опубликована: 11.04.11 08:00
Прислала: Karine img
Источник: из зарубежныхолимпиад
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Cколько решений в целых числах имеет уравнение x2+y2+z2=x2y2?

Задачу решили: 80
всего попыток: 123
Задача опубликована: 15.04.11 11:00
Прислала: Marishka24 img
Источник: Канадская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

В соревновании, состоящем из N состязаний, участвовали Андрей, Боря и Вася. За первое место в каждом состязании присуждалось x, за второе – y, за третье – z очков, где x>y>z>0 и все они целые. В итоге Андрей набрал 22, а Боря и Вася – по 9 очков. Боря победил в забеге на 100 метров. Найдите N и определите, кто был вторым в прыжках в высоту. В ответе введите без пробела сначала N, а затем номер участника по алфавиту: 1 (Андрей), 2 (Боря) или 3 (Вася).

+ 30
  
Задачу решили: 111
всего попыток: 171
Задача опубликована: 22.04.11 08:00
Прислал: marafon img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: putout (Дмитрий Лебедев)

Два бизнесмена решили продать принадлежавшие им акции, а вырученные деньги разделить поровну. По совпадению каждая акция стоила столько у.е., сколько у них было всего акций. С ними расплатились купюрами по 10 у.е. и несколькими (меньше 10-ти) купюрами по 1 у.е. Делили они так: первому десятку — второму десятку, снова первому — затем второму. В конце выяснилось, что первому досталась последняя десятка, а второму не хватило. Тогда первый выписал второму чек на некоторую сумму и отдал все банкноты по 1 у.е. На какую сумму в у.е. первый выписал чек второму?

Задачу решили: 94
всего попыток: 152
Задача опубликована: 25.04.11 08:00
Прислала: Karine img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Укажите максимальное значение выражения , если  и  для любого .

Задачу решили: 76
всего попыток: 185
Задача опубликована: 11.05.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Сколько целых положительных решений имеет уравнение:
?

Задачу решили: 34
всего попыток: 63
Задача опубликована: 13.06.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

На квадратном коврике со стороной 120 см есть несколько пятен, площадь каждого из которых не больше 36 см2. Известно, что любая прямая, параллельная одной из сторон квадрата, пересекает не более одного пятна. Сколько см2 может составлять наибольшая общая площадь всех пятен?

Задачу решили: 118
всего попыток: 127
Задача опубликована: 24.06.11 08:00
Прислал: marafon img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

В равенстве СТУПЕНЬКА=ТТППЬ×ТТППЬ каждая буква означает цифру, разные буквы — разные цифры. Нулей нет. Чему равна СТУПЕНЬКА?

Задачу решили: 58
всего попыток: 133
Задача опубликована: 17.08.11 08:00
Прислал: zmerch img
Источник: Всеукраинские олимпиады школьников
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg

Многочлен вида a0xn+a1xn−1+…+an, назовём однообразным, если n>0, а каждый из его n+1 коэффициентов и каждый из его n корней равен 1 или −1. Сколько существует различных однообразных многочленов?

Задачу решили: 64
всего попыток: 99
Задача опубликована: 08.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Числа x, x−5, x+5 — квадраты рациональных чисел. Найдите x

Задачу решили: 60
всего попыток: 82
Задача опубликована: 17.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найдите сумму наибольших нечётных делителей всех целых чисел от n+1 до 2n включительно, где n — целое и n>0. В ответе укажите её значение при n=2011.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.