img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 12
всего попыток: 49
Задача опубликована: 29.08.11 08:00
Прислал: Timur img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На листе бумаги в форме равностороннего треугольника со стороной 30 см разбрызганы капли чернил. Если на этом листе нарисовать (косоугольную) систему координат с произвольным началом, осями, параллельными любым двум сторонам листа, и масштабом 1 см вдоль обеих осей, то хотя бы одна точка с целыми координатами обязательно окажется окрашенной чернилами. Какое наименьшее целое число квадратных миллиметров может составлять общая площадь всех клякс? (Можно считать, что каждая клякса — многоугольник или круг, а всех клякс — конечное число.)

(Присланная задача изменена администрацией)
Задачу решили: 34
всего попыток: 38
Задача опубликована: 21.10.11 08:00
Прислал: demiurgos img
Источник: классика
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: Timur

Пусть p(n) — вероятность того, что ни одно из n писем, случайным образом запечатанных в приготовленные для них n конвертов, не дойдёт до своего адресата. Найти предел p(n)при n→∞.

Задачу решили: 76
всего попыток: 110
Задача опубликована: 28.12.11 08:00
Прислал: Artsakh img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: zhekas (Евгений Сыромолотов)

В квадрате ABCD |AO| : |BO| : |CO| = 1 : 2 : 3, где О - точка внутри квадрата. Сколько градусов составляет угол AОB.

Задачу решили: 54
всего попыток: 73
Задача опубликована: 16.01.12 08:00
Прислал: Artsakh img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

В остроугольном треугольнике ABC биссектриса  AD  равна стороне AC и перпендикулярна отрезку OM, где O - центр описанной окружности, M - точка пересечения высот треугольника ABC. Найдите углы треугольника  ABC. В ответе укажите самый большой угол треугольника в градусах.

Задачу решили: 69
всего попыток: 154
Задача опубликована: 02.04.12 08:00
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Сколькими способами можно расставить 8 королей на доске 2*16 (2 строки, 16 столбцов) так, чтобы они не угрожали друг другу (короли не должны располагаться рядом, в том числе и по диагонали}?

 

Задачу решили: 28
всего попыток: 40
Задача опубликована: 29.06.12 08:00
Прислала: allanick img
Вес: 1
сложность: 3 img
баллы: 100

Если бросить пару обычных костей (кубиков, грани которых пронумерованы точками от 1 до 6), то имется один вариант, когда выпадает в сумме 2, два варианта, когда выпадает в сумме 3 и т.д.

Необычные шестигранные кости - это такие кости, у которых:

  • количество точек на каждой грани  у них отлично от стандартного {1,2,3,4,5,6};
  • каждая грань содержит по крайней мере одну точку;
  • количество вариантов получить значение каждой суммы точно такое же, как и для пары обычных (стандартных) костей.

Значения  количества точек для каждой кости представьте в виде неубывающей последовательности чисел, например {1,2,2,3,3,4}, и далее в виде шестизначного числа, 122334.

Найдите все необычные кости и в качестве ответа дайте сумму найденных чисел.

Задачу решили: 44
всего попыток: 80
Задача опубликована: 25.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Четырёхугольник ABCD вписан в окружность O, AB = 24, AD = 16, \angle BAC = \angle DAC. Прямые AC и BD пересекаются в точке E, BE = 18. Прямая, проходящая через точку D и перпендикулярная AC пересекает окружность O в точке F(\ne D), прямые FC и AB пересекаются в точке K, AC и DF пересекаются в точке L. Найдите длину отрезка KL.

+ 17
  
Задачу решили: 69
всего попыток: 71
Задача опубликована: 07.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

Точка М - середина стороны АВ треугольника АВС. На отрезке СМ выбраны точки P и Q так,что СQ=2*РМ. Оказалось, что угол АРМ = 90. Найдите BQ/AC.

Задачу решили: 43
всего попыток: 84
Задача опубликована: 18.03.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2005
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В одной кучке лежит n камней, а в другой – k камней. Каждую минуту автомат выбирает кучку, в которой четное число камней, и половину имеющихся в ней камней перекладывает в другую кучку (если в обеих кучках четное число камней, то автомат выбирает кучку случайным образом). Если в обеих кучках число камней оказалось нечетным, автомат прекращает работу. Сколько существует упорядоченных пар натуральных чисел (n, k), не превосходящих 1000, для которых автомат через конечное время обязательно остановится?

Задачу решили: 32
всего попыток: 71
Задача опубликована: 22.03.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Дана белая клетчатая доска 10?10. Игрок хочет провести в каждой клетке диагональ и закрасить один из получающихся треугольников в черный цвет так, чтобы к любой границе двух клеток примыкали два одноцветных треугольника. Сколькими различным способами игрок может это сделать?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.