img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 43
всего попыток: 112
Задача опубликована: 13.11.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Про 27 монет известно, что 26 из них настоящие и весят 1 грамм, а ещё одна монета фальшивая и весит m, m+1 или m+2 граммов (где m — натуральное число, известное взвешивающему). Оказалось, что за два взвешивания на чашечных весах без гирь можно определить вес фальшивой монеты. При каком наибольшем m это возможно?

Задачу решили: 48
всего попыток: 62
Задача опубликована: 02.12.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

На окружности отмечены 2006 точек. Сначала Петя проводит N хорд с концами в этих точках. Затем Валя красит половину отмеченных точек в один цвет, а остальные – в другой. Петя выигрывает, если найдется хорда с концами разного цвета. При каком наименьшем N Валя не сможет ему помешать?

Задачу решили: 32
всего попыток: 68
Задача опубликована: 23.12.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Суду в качестве вещественного доказательства предъявлено 100 одинаковых по весу монет, вес каждой больше 10 г (однако суд не знает, что они одинаковы). К сожалению, имеющиеся в суде весы показывают вес любого груза с отклонением ровно в 1 г — иногда в бóльшую, а иногда в меньшую сторону (и, к счастью, суд знает об этом). При каком наибольшем k эксперт может доказать суду, что среди монет есть не менее k одинаковых?

Задачу решили: 38
всего попыток: 58
Задача опубликована: 17.02.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В очереди стояло 20 человек. Касса сломалась, и все перешли в соседнюю только что открывшуюся кассу. Сколькими способами они могут выстроиться в новую очередь так, чтобы человек, стоявший на месте с номером k изменил свой номер в очереди не более чем на k?

Задачу решили: 44
всего попыток: 118
Задача опубликована: 27.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Основание правильной пирамиды ABCD является квадратом со стороной 2. Вершина пирамиды E находится на высоте 1 от основания. На стороне CE посредине отмечена точка F.

Муравей ползет из точки A в точку F по кратчайшему пути. Найдите квадрат расстояния пройденного муравьем.

Задачу решили: 25
всего попыток: 35
Задача опубликована: 29.04.20 08:00
Прислал: avilow img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Имеются две модели октаэдров: каркасная и бумажная.

2 октаэдра

Число k – это отношение длины ребра каркасного октаэдра к длине ребра бумажного октаэдра. Ребра каркасного октаэдра считать бесконечно тонкими. При каком наименьшем значении k бумажный октаэдр можно вставить внутрь каркасного октаэдра? В ответе укажите квадрат этого отношения.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.