Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
563
всего попыток:
2177
12 биллиардных шаров, между которыми одинаковые промежутки, движутся по одной прямой с одной и той же скоростью в одном и том же направлении, а навстречу им по той же прямой с той же скоростью движутся 15 таких же шаров с такими же промежутками между ними. Сколько столкновений произойдет в этой системе? (Столкновения считать абсолютно упругими - потерь механической энергии нет.)
Задачу решили:
264
всего попыток:
502
В выборах в стоместный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов (т.е. если одна из партий набрала в x раз больше голосов, чем другая, то и мест в парламенте она получит в x раз больше). После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т.п. не было) и каждая партия получила целое число мест. При этом Партия участников проекта "Диофант" набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?
Задачу решили:
194
всего попыток:
660
Наибольший общий делитель (НОД) натуральных чисел m и n равен 1. Каково максимально возможное значение НОД чисел m+100n и n+100m?
Задачу решили:
115
всего попыток:
372
Какова наибольшая возможная площадь ортогональной проекции на горизонтальную плоскость прямоугольного параллелепипеда со сторонами 10, 20 и 30 см? (Ответ дайте в квадратных сантиметрах.)
Задачу решили:
201
всего попыток:
1035
На доске выписаны подряд целые числа от 0 до 1024 — всего 1025 чисел. Двое играют в такую игру. Сначала первый стирает 512 чисел, потом второй стирает 256 чисел, потом первый 128, потом второй 64 и т.д. На десятом ходу второй стирает одно число, после чего первый выплачивает ему разницу между двумя оставшимися числами. Какую сумму он получит при наилучшей стратегии обоих игроков?
Задачу решили:
171
всего попыток:
572
На сколько процентов максимально возможная площадь круга, лежащего внутри куба, больше площади круга, вписанного в его грань?
Задачу решили:
140
всего попыток:
412
Сколько градусов составляет наименьший угловой размер большой диагонали куба, если смотреть с его поверхности (исключая, разумеется, концы самой диагонали)?
Задачу решили:
123
всего попыток:
463
Сколько имеется различных нумераций всех рёбер куба числами от 1 до 12, обладающих следующим свойством: сумма номеров рёбер, сходящихся в одной вершине, — одна и та же для всех вершин куба? (Две нумерации считаются разными, если они не переходят друг в друга при любом вращении куба.)
Задачу решили:
270
всего попыток:
432
С целью ухода от налогов первый из 5 друзей торговцев одолжил остальным столько денег, сколько было у каждого. Затем также поступил второй, потом третий, потом четвёртый, и наконец пятый. После всех пяти процедур капитал каждого не изменился. Каков капитал первого торговца, если капитал последнего составляет 100 экю?
(Предлагалась на "Первом математическом")
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|