Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
105
всего попыток:
513
Грибник заблудился в лесу. Однако он уверен, что не дальше, чем в 3 км от него, находится прямое шоссе. Какое минимальное число км придётся преодолеть грибнику, чтобы наверняка (т.е. при полном отсутствии везения) выбраться на шоссе? Ответ округлите до ближайшего целого числа.
Задачу решили:
99
всего попыток:
202
На какое минимальное число частей нужно разрезать два неравных квадрата, чтобы из полученных частей можно было сложить квадрат (а лишних частей при этом не осталось)?
Задачу решили:
80
всего попыток:
150
Пусть b(1)<b(2)<b(3)<... — такая строго возрастающая последовательность целых положительных чисел, что b(b(n))=3n для любого n. Найдите b(2009).
Задачу решили:
44
всего попыток:
237
Найти минимальное n, при котором справедливо следующее утверждение: среди любых n различных целых положительных чисел, записанных в порядке возрастания, обязательно найдутся 6 чисел, каждое из которых (кроме первого) либо делится на все предыдущие, либо не делится ни на одно из предыдущих.
Задачу решили:
146
всего попыток:
188
На гипотенузе прямоугольного треугольника с длинами катетов 21 и 28 построен квадрат. Отрезок, соединяющий точку пересечения диагоналей квадрата с вершиной прямого угла треугольника, делит его гипотенузу на отрезки. Найдите произведение длин этих отрезков.
Задачу решили:
83
всего попыток:
223
Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными шестизначными числами.
Задачу решили:
12
всего попыток:
118
Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными 16-значными числами.
Задачу решили:
135
всего попыток:
189
Найти площадь треугольника, высоты которого равны: 12, 63/5, 252/13.
Задачу решили:
54
всего попыток:
103
В треугольнике АВС из вершины А проведены две прямые, пересекающие основание ВС. При этом диаметры вписанных окружностей трёх образовавшихся треугольников равны между собой. Найти отношение высоты, опущенной из вершины А на сторону ВС, к диаметру этих окружностей, если величина угла В — 70°, а С — 80°. Ответ округлите до ближайшего целого числа.
Задачу решили:
42
всего попыток:
47
В прямоугольную таблицу вписаны некоторые числа (по одному числу в каждую клетку). Разрешается одновременно изменить знаки на противоположные у всех чисел любого столбца или любой строки. Эту операцию можно применить сколько угодно раз. Всегда ли можно добиться, чтобы суммы чисел, стоящих в каждой строке и в каждом столбце стали неотрицательными?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|