img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 83
всего попыток: 126
Задача опубликована: 25.05.11 08:00
Прислала: Marishka24 img
Источник: Индийская региональная олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zhekas (Евгений Сыромолотов)

Сколько различных действительных решений имеет уравнение: ? (Как обычно,  — это целая часть числа x, а — его дробная часть.)

Задачу решили: 78
всего попыток: 183
Задача опубликована: 10.06.11 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: andervish (Андрей Вишневый)

Найдите все натуральные (целые положительные) решения уравнения . В ответе укажите сумму всех возможных значений .

Задачу решили: 69
всего попыток: 191
Задача опубликована: 27.06.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

На листке написано несколько различных действительных чисел. Среди любых трёх из них обязательно найдутся два, сумма которых тоже написана на листке. Какое наибольшее количество чисел может быть на листке?

Задачу решили: 88
всего попыток: 111
Задача опубликована: 05.08.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Пусть — многочлен от переменной с чётными целыми коэффициентами, и   — такие целые числа, что . Найдите наибольшее возможное значение разности .

Задачу решили: 123
всего попыток: 164
Задача опубликована: 15.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Утроенная сумма двух положительных чисел не больше их произведения. Найдите наименьшее значение суммы этих чисел.

Задачу решили: 99
всего попыток: 154
Задача опубликована: 23.11.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

Имеется 4023 последовательных натуральных числа. Известно, что сумма квадратов первых 2012 чисел равна сумме квадратов последних 2011 чисел. Найдите первое число.

Задачу решили: 108
всего попыток: 171
Задача опубликована: 30.11.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

При каком натуральном n величина 2011n·n2/2012n принимает наибольшее значение?

Задачу решили: 137
всего попыток: 147
Задача опубликована: 17.02.12 08:00
Прислал: Yhlas img
Источник: Зарубежные математические олимпиады
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Решите систему уравнений:
x+xy+y=2+3√2,
x2+y2=6.
Чему равно (xy)2?

Задачу решили: 66
всего попыток: 172
Задача опубликована: 07.03.12 08:00
Прислал: katalama img
Источник: Британская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Дана последовательность натуральных чисел u0, u1,u2,... такая, что u0=1, un-1*un+1=kun, для любого n≥1. Найти сумму всех возможных значений параметра k, если известно, что u2012=2012.

Задачу решили: 71
всего попыток: 86
Задача опубликована: 11.04.12 08:00
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Даны два многочлена, которые удовлетворяют условиям:   

a5 +  b+c5 + 5(a4(b + c) + b4(a + c) +c4(a + b)) = -1

a3(b2 + c2 ) + b3(a2 + c2) + c3(a2 + b2) + 2(a3bc + b3ac +c3ab ) + 3abc(ab + bc + ac) = 1/10

Чему равно a + b + c?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.