img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 64
всего попыток: 182
Задача опубликована: 16.05.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Каждую клетку прямоугольника 6×8 раскрасили в один из 12 различных цветов. Пара цветов называется плохой, если найдутся две клетки, имеющие общую сторону и закрашенные этими цветами. Найдите наименьшее число плохих пар.

Задачу решили: 26
всего попыток: 31
Задача опубликована: 27.05.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Сколькими способами можно  записать все различные целые числа от 1 до n в одну строку так, чтобы выполнялось следующее условие: где-то после любого числа k, написанного не на последнем месте, должно встретиться хотя бы одно из чисел k−1 и k+1?

Задачу решили: 19
всего попыток: 81
Задача опубликована: 16.09.11 08:00
Прислал: volinad img
Источник: задачи 595, 603 и 606
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

В оранжерее на космической станции в виде прямоугольника 713×137 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Трижды хлопала дверь, и всякий раз каждая из 713×137 бабочек перелетала по диагонали на соседний цветок. После каждого хлопка на некоторых цветах оказывалось по несколько бабочек, а на некоторых — ни одной, и при этом каждая бабочка, в очередной раз перелетая, не возвращалась на свой прежний цветок. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки после трёх хлопков.

Задачу решили: 44
всего попыток: 92
Задача опубликована: 18.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: vitmark (Vitaly Markasyan)

На клетчатой бумаге отмечены точки A и B. Примем длину стороны клетки за 1. Посчитайте количество маршрутов идущих из A в B по сторонам клеток и имеющих длину 11. (Маршрут может менять направление только в углах клеток. Допускаются маршруты, проходящие несколько раз через одну вершину (включая A и B) или сторону клетки.)
k11.gif 

Задачу решили: 45
всего попыток: 111
Задача опубликована: 29.02.12 08:00
Прислал: Dremov_Victor img
Источник: Японская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Множество Q(n) состоит из слов длины 2n, в записи которых ровно n букв A и n букв B, обладающих следующим свойством: для каждого k ≤ 2n среди первых k букв количество букв B не меньше, чем букв A. Найдите мощность Q(8).

Задачу решили: 36
всего попыток: 156
Задача опубликована: 13.06.12 08:00
Прислал: levvol img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

На ипподроме  происходит заезд восьми лошадей. Как много вариантов финишировать имеется, учитывая, что некоторые  лошади могут придти к финишу одновременно (голова  в  голову)?  (Две лошади могут финишировать тремя способами: А выигрывает, В выигрывает, А и B приходят одновременно).

Задачу решили: 11
всего попыток: 78
Задача опубликована: 25.06.12 08:00
Прислал: katalama img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Возьмём полоску бумаги и начнём её разрезать и сгибать пополам. Обозначим

  • 0 - сгиб, при котором правая часть загибается вниз;
  • 1 - сгиб, при котором левая часть загибается вниз;
  • 2 - разрез, при котором правая часть подкладывается под левую;
  • 3 - разрез, при котором левая часть подкладывается под правую.

kata.png

Последовательность сгибов/разрезов назовём "фальцовкой".
В результате фальцовки мы получим "тетрадь".
Если теперь перенумеровать все страницы сверху вниз начиная с нуля, а затем развернуть тетрадь обратно в полоску, то увидим, что вся полоса (сверху и снизу) исписана числами. Последовательность чисел (сначала тех что сверху, затем тех, что снизу) назовем "раскладкой". Например, фальцовке '00' соответствует раскладка '0,7,4,3,2,5,6,1'. Здесь число 0 - находится на нулевом, а 7 на первом месте.

Определите на каком месте находится число 2012 в раскладке для следующей фальцовки: '2010201120122013'

Задачу решили: 27
всего попыток: 100
Задача опубликована: 10.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите количество инъективных функций f \colon \{1,2,\ldots, 7\} \to \{1,2,\ldots,9\}, обладающих следующим свойством:

f(i) \ne f(j) + 1 для всех 1 \le i < j \le 7.

Задачу решили: 40
всего попыток: 79
Задача опубликована: 31.10.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите количество подмножеств множества натуральных чисел {1,2,...,37} с суммой элементов, делящейся на 74.

Задачу решили: 32
всего попыток: 250
Задача опубликована: 20.02.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

При каком наименьшем k в любой раскраске клеток таблицы 2012?k в 1006 цветов найдутся четыре клетки одного цвета, стоящие на пересечении двух строк и двух столбцов?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.