img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 72
всего попыток: 267
Задача опубликована: 09.11.11 08:00
Прислал: leonid img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: altist (Альтист Данилов)

Найдите остаток от деления многочлена

x57+5x56-13x31-7x30-x2+2x-3

на 7x2+7. В ответе укажите значение многочлена при x=1.

Задачу решили: 55
всего попыток: 78
Задача опубликована: 22.05.13 08:00
Прислал: leonid img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Стороны треугольника 192, 120 и 168. Найдите расстояние от центра описанной окружности до ортоцентра (точка пересечения высот).

Задачу решили: 36
всего попыток: 40
Задача опубликована: 21.06.13 14:36
Прислал: leonid img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

Сколько существует натуральных n, 3<=n<=2013, таких, что найдётся множество различных натуральных чисел {a(1),a(2), ..., a(n)}, для любой перестановки {b(1),b(2), ..., b(n)} которых ни для каких индексов i<j<k не выполняется равенство b(k)=(b(i)+b(j))/2?

Задачу решили: 14
всего попыток: 16
Задача опубликована: 27.02.17 08:00
Прислал: leonid img
Источник: XLIII Московская областная математическая оли...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Имеется таблица 1000 х 1000, все клетки которой изначально пусты. Два игрока-терминатора соревнуются в следующей игре. За один ход можно записать в любую незанятую клетку таблицы любое натуральное число от 1 до 106, если такого числа еще нет в таблице. Игроки записывают числа, пока не заполнят всю таблицу. Пусть А количество строк, в каждой из которых сумма чисел делится нацело на 106, а В – количество столбцов, в каждом из которых сумма чисел делится нацело на 106. Первый игрок выигрывает, если А > В, иначе выигрывает второй игрок. Кто из игроков сможет выиграть независимо от игры соперника? (Укажите номер победителя: 1 или 2.)

Задачу решили: 23
всего попыток: 25
Задача опубликована: 31.03.17 08:00
Прислал: leonid img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На каждой стороне 10-угольника (не обязательно выпуклого) как на диаметре построили окружность. Может ли оказаться, что все эти окружности имеют общую точку, не совпадающую ни с одной вершиной 10-угольника?

Задачу решили: 35
всего попыток: 66
Задача опубликована: 16.10.17 08:00
Прислал: leonid img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найдите положительный остаток при делении 666666777777 на 1464851.

Задачу решили: 31
всего попыток: 38
Задача опубликована: 29.11.17 08:00
Прислал: leonid img
Источник: 39-й Турнир Городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Окружность радиуса 1 нарисована на шахматной доске так, что целиком содержит внутри белую клетку (сторона клетки равна 1). Причем, центры окружности и клетки не обязательно совпадают. Пусть L1 – сумма  длин участков этой окружности, проходящих по белым клеткам, а L – длина всей окружности. Определите точную верхнюю границу отношения L1/ L.

Задачу решили: 40
всего попыток: 59
Задача опубликована: 26.02.18 08:00
Прислал: leonid img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Найдите остаток от деления многочлена (15x996 + 2x335 – 11x3 + 125x + 646) на многочлен (– 2x2 – 2).

В ответе укажите сумму коэффициентов остатка.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.