img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 51
всего попыток: 70
Задача опубликована: 11.01.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найти максимальное число, которое является делителем для всех чисел вида n7-n, где n - натуральное.

Задачу решили: 48
всего попыток: 56
Задача опубликована: 14.01.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: trial (Трибунал Данилов)

Найти сумму всех натуральных чисел, квадрат которых представляется в виде 14...4 (единица в начале и затем несколько четверок). 

Задачу решили: 37
всего попыток: 57
Задача опубликована: 16.01.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Найти наименьшее число N такое, что 1+22018+32018+...+N2018 - делится на 2018.

Задачу решили: 49
всего попыток: 58
Задача опубликована: 18.01.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

Сумма возрастов пяти школьников равна 47. Их возрасты - положительные целые числа, и у любых двух из них общий делитель больше 1. Сколько лет старшему?

Задачу решили: 40
всего попыток: 83
Задача опубликована: 21.01.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Вася в полночь начал фиксировать время на своих электронных часах и, не смыкая глаз, следил за ним в течение суток. Он записывал время, которое является палиндромом вида (АВ:ВА) (например, 01:10, 12:21), и считал интервалы в минутах между появлениями двух соседних палиндромов. При этом Вася выяснил, что длительности некоторых интервалов повторяются. Сложив различные значения длительности всех интервалов времени в минутах и количество палиндромов, Вася получил интересное число. Какое это число?

Задачу решили: 22
всего попыток: 39
Задача опубликована: 25.01.19 08:00
Прислал: Sam777e img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

На рисунке A, B, C и D - конциклические точки.

Конциклические точки

SAPD= 27, SBPC= 12, |AB| = 10.

Найдите наименьшее возможное значение площади треугольника CDP.

Задачу решили: 70
всего попыток: 83
Задача опубликована: 28.01.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

На обложке школьной тетради изображена таблица Пифагора, в которой каждое число равно произведению номера столбца и номера строки.

Таблица Пифагора

Найдите сумму всех чисел этой таблицы.

Задачу решили: 46
всего попыток: 48
Задача опубликована: 30.01.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Разность длин двух высот в равнобедренном треугольнике с основанием 10 равна отношению периметра к длине боковой стороны. Найти длину боковой стороны.

Задачу решили: 33
всего попыток: 64
Задача опубликована: 01.02.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: anrzej

Пусть p, q, r, s - корни уравнения с действительными коэффициентами x4-ax3+ax2+bx+c=0. Определите минимум выражения p2+q2+r2+s2.

Задачу решили: 36
всего попыток: 77
Задача опубликована: 04.02.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

Имеется 1000 неокрашенных кубиков одного размера. Каждую грань этих кубиков можно покрасить одним цветом по своему усмотрению. Играя с этими кубиками можно сложить куб 10х10х10, поверхность которого полностью красная. Переложив кубики, можно сложить куб 10х10х10, поверхность которого полностью синяя, и т.д.

Какое наибольшее число одноцветных кубов 10х10х10 различных по цвету можно сложить из этого набора.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.