Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
25
Через концы меньшего основания трапеции проведены две параллельные прямые,пересекающие большее основание. Диагонали трапеции и эти прямые разделили трапецию на семь треугольников и пятиугольник. Площади двух треугольников,прилежащих к боковым сторонам равны 60 и 87, площадь треугольника, прилежащего к меньшему основанию равна 105. Найти отношение площади этого треугольника к площади пятиугольника.
Задачу решили:
22
всего попыток:
26
На сторонах треугольника наименьшей целочисленной площади построены квадраты с общей площадью 560. Найти отношение целочисленных площадей двух квадратов (меньшей к большей) при известной площади третьего кадрата 74.
Задачу решили:
29
всего попыток:
46
Назовем зеркальным числом такое трехзначное число в сумме с трехзначным числом, записанным теми же цифрами, но в обратном порядке, даёт полный квадрат. Найти сумму всех зеркальных числел..
Задачу решили:
24
всего попыток:
30
Найдите количество хорд с концами в целочисленных точках параболы y = x2 при |x| <= 9*12 (=108)? В ответе укажите это количество хорд, делённое на 12. P.S. С Днем Рождения, Николай Иванович!
Задачу решили:
25
всего попыток:
42
Известно, что
Задачу решили:
22
всего попыток:
37
На гипотенузе АВ треугольника АВС во внешнюю сторону построен квадрат ABDE. Отношение длин катетов ВС:АС=1:2. Прямая CD пересекает отрезок АВ в точке К . Прямая, перпендикулярная к CD, проведенная через точку К пересекает отрезок АЕ в точке М. Найти отношение длин отрезков АМ/МЕ.
Задачу решили:
28
всего попыток:
31
На катетах треугольника АВС (АС=12, ВС=5) построены во внешнюю сторону квадраты АСKL и BCMN. Прямые BL и AN, пересекаясь между собой в точке R, пересекаются соответственно с катетами АС и ВС в точках P и Q. Найти модуль разности площадей четырехугольника CPRQ и треугольника ABR.
Задачу решили:
26
всего попыток:
32
Учитель нарисовал в своей тетрадке треугольник с целочисленными сторонами и сказал об этом трем ученикам математического класса. Кроме того, каждому сообщил длину одной из сторон (разным ученикам длины разных сторон). После этого между учениками состоялся следующий разговор. Петя: "Я знаю, этот треугольник непрямоугольный". Вася: "Если бы я знал, что он неравнобедренный, то знал бы все стороны". Толя: " Треугольник действительно неравнобедренный". Чему равен периметр нарисованного треугольника?
Задачу решили:
21
всего попыток:
30
Прямоугольная трапеция с целочисленными основаниями с вписанной окружностью и с целочисленным радиусом такова, что она равновелика квадрату с целочисленной стороной. При этом известно, что длина малого основания трапеции является простым числом. Найти сумму длин сторон первых трех таких квадратов (по возрастанию).
Задачу решили:
27
всего попыток:
35
С вершины А треугольника АВС проведена медиана АD. Стороны |АВ|:|АС|=1:2. На отрезке BD стороны ВС отмечена точка Е так, что угол ЕАВ равен углу CAD. Найти отношение |ВЕ|/|ED|.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|