Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
65
всего попыток:
105
Для натуральных чисел a, b, c справедливо равенство
Найдите значение a + b + c.
Задачу решили:
46
всего попыток:
61
Последовательность целых чисел такова, что , , и для некоторого натурального k выполняется Также известно, что последовательность обладает следующим свойством Найдите значение .
Задачу решили:
87
всего попыток:
132
Найти минимальное значение выражения: x8+y8-3x2y2, х и у - действительные числа.
Задачу решили:
69
всего попыток:
88
Даны две арифметические прогрессии a1, a2… и b1, b2, …. (арифметическая прогрессия — это последовательность, в которой an = an–1+d, где d — некоторое число, единое для всей последовательности). Известно, что a1 = b1, и для каждого номера i остатки от деления ai и bi на i совпадают. Найдите значение выражения a2012- b2012.
Задачу решили:
56
всего попыток:
277
Десять школьников стоят в ряд. Каждую минуту какие-то два соседних школьника меняются местами. Через некоторое время выяснилось, что каждый из школьников успел побывать на первом и последнем месте. Найдите минимальное число минут которое могло пройти.
Задачу решили:
101
всего попыток:
116
Найдите максимально возможное значение выражения x/(x2+3)+y/(y2+3), если x>0, y>0, x·y=1, x,y - действительные числа.
Задачу решили:
67
всего попыток:
101
Найдите минимальное натуральное число k такое, что при любых натуральных n, значение многочлена P(n)=7·n37+37·n7+4·k·n - делится на 259 без остатка.
Задачу решили:
40
всего попыток:
62
Пусть задана строка состоящая из 2m неотрицательных целых чисел, удовлетворяющих условию: 1) числа в строке не могут возрастать; 2) каждое число не превосходит m; 3) нулей может быть любое количество, не превосходящее 2m, остальные числа могут иметь только одну пару. Пример для m=4: Найти количество таких строк при m=10.
Задачу решили:
65
всего попыток:
106
Для данной функции , найдите сумму .
Задачу решили:
36
всего попыток:
266
В стране 1000 городов, некоторые пары городов соединены дорогами. Оказалось, что один из концов любой дороги является городом, из которого выходит не более 10 дорог. Какое наибольшее количество дорог может быть в этой стране?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|