img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 19
всего попыток: 473
Задача опубликована: 10.06.09 16:27
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

Хозяйка испекла для гостей пирог. К ней может прийти либо 7, либо 8, либо 9 человек. На какое наименьшее число кусков ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну и между семью, и между восемью, и между девятью гостями?

Задачу решили: 33
всего попыток: 430
Задача опубликована: 13.12.09 19:11
Прислал: bbny img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: ghost

Припишем каждой букве русского языка свой номер: А–1, Б–2, ..., Я–33 (включаем все: Ё, Й, Ъ, и т.д.). Попытаемся разместить на плоскости несчётное множество букв А, несчётное множество букв Б, и так до буквы Я. Одинаковые буквы могут быть разного размера, но не могут иметь общих точек. Укажите сумму номеров букв, для которых это можно сделать.

Замечания: 1) Каждая буквая — это объединение точек, отрезков и дуг окружностей; у букв нет никаких украшений, закорючек и выступов, например, буква Г состоит из двух отрезков, образующих прямой угол, буква Д — это буква П (три отрезка), стоящая на подставке, похожей на П, но более широкой и низкой, буква К — угол, примыкающий к отрезку, буква Ж — симметрия с буквой К, буква О — объединение четырёх дуг окружностей, буква З — правая половина конструкции из двух касающихся равных окружностей, стоящих друг на друге, буква Й — дуга над тремя отрезками, буква С — три дуги от буквы О, буква Р — конструкция из двух отрезков и дуги окружности, примыкающая к вертикальному отрезку вверху и посередине, буква Л — два отрезка, образующие острый угол, и т.д. 2) Бесконечное множество называется несчётным, если оно не допускает взаимно однозначного отображения на множество натуральных чисел. Например, числовая прямая, отрезок ненулевой длины, окружность и плоскость представляют собой несчётные множества точек. Ну, а рациональные числа образуют, наоборот, счётное множество.

Задачу решили: 54
всего попыток: 795
Задача опубликована: 27.12.09 17:26
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: bbny

Играют двое. У первого есть монеты достоинством в 2 рубля и 5 рублей. Одну из них (по своему выбору) он зажимает в кулаке, а второй игрок пытается угадать, что это за монета. Если тот угадывает, то получает монету, а если нет, то платит первому игроку m копеек. Найдите наибольшее целое m, при котором игра выгодна второму игроку.

Это открытая задача (*?*)
Задача опубликована: 28.05.10 16:03
Прислал: demiurgos img
Вес: 1
сложность: 4 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Представим отрезок гармонического ряда


в виде несократимой дроби. Доказать, что её числитель делится на , если — простое и .

Задачу решили: 51
всего попыток: 762
Задача опубликована: 15.08.11 08:00
Прислал: Timur img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: bbny

Даны чашечные весы, имеющие особенность — они могут выдержать ровно 3 взвешивания (неважно в каком порядке) неравных грузов, после чего ломаются. Одинаковые веса можно уравновешивать на этих весах бесконечное количество раз. Среди N монет есть одна фальшивая, вес которой меньше настоящих. Найдите максимальное N при котором можно найти фальшивую не более, чем за 7 взвешиваний на этих весах.

Задачу решили: 16
всего попыток: 368
Задача опубликована: 09.09.11 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Вернувшись из своего путешествия на Луну, Незнайка решил написать книгу о своих приключениях. Каждый вечер он читал новую главу из неё своим друзьям и однажды прочитал им следующие невероятные события: "Однажды утром Спрутс бросил меня в огромную пещеру с абсолютно гладкими гранитными стенами, которая представляла собой точный куб размерами 100x100x100 метров. Я стоял на краю небольшой ниши, нижний край которой был ровно в центре вертикальной грани этого куба. Выход на волю (его нижний край) был ровно в центре противоположной от меня грани. Присмотревшись, я увидел  канат висящий от выхода до пола. Если бы я как-то спустился на пол пещеры, я легко выбрался бы взобравшись по нему. Однако я был на высоте 50 метров от пола и не мог спрыгнуть. К счастью, у меня был подарок Миги: чудесный моток точно такого же каната. Сколько каната из него ни вытягивай, можно вытянуть еще столько же и так далее. Правда он был немного неудобный, в сечении это был не круг, а квадрат со стороной 2 см. Достаточно толстый, но очень гибкий и скользкий.  Как я ни старался, я так и не смог закрепить канат, чтобы спуститься по нему вниз. Исследовав всю небольшую нишу, я нашел ножницы, которыми можно было перерезать канат. Выхода из ситуации не было, однако поразмыслив я все же смог выбраться!"

"Враньё от первого до последнего слова!" — засмеялись все находившиеся в комнате коротышки, однако профессор Звёздочкин сказал, что при этих условиях у Незнайки действительно был один способ, чтобы выбраться из пещеры, и Знайка с ним согласился. Какое наименьшее количество метров каната нужно было вытянуть Незнайке из мотка, чтобы выбраться? (Считаем, что размеры Незнайки точечные, любой прыжок на любую высоту вверх или вниз смертелен).

Задачу решили: 15
всего попыток: 727
Задача опубликована: 30.05.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Площадь выпуклого пятиугольника ABCDE равна 180. На его сторонах AB, BC, CD, DE и EA выбраны точки K, L, M, N и O так, что |AK|/|KB|=|BL|/|LC|=|CM|/|MD|=|DN|/|NE|=|EO|/|OA|=2. Найдите минимальное и максимальное целочисленные значения площади пятиугольника KLMNO. В ответе укажите их произведение.

Задачу решили: 33
всего попыток: 424
Задача опубликована: 01.08.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Дано множество X = \{ 1, 2, \ldots, 13 \}. Определим функцию g\colon X \to X следующим образом:
g(x) = 14 - x,\quad x \in X.
Найдите количество функций f\colon X \to X, для которых композиция f \circ f \circ f равна g.

Задачу решили: 55
всего попыток: 659
Задача опубликована: 31.08.12 08:00
Прислал: TALMON img
Источник: Израильская книга "Миспар хазак" ("сильное чи...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Angelina

В одном плоском лесу есть бесконечно много деревьев. Расстояние между любыми двумя деревьями - целое число метров.

Рассмотрим три дерева, стояших в точках A, B и C.

Какое минимально возможное положительное значение угла ABC в градусах?

Задачу решили: 30
всего попыток: 406
Задача опубликована: 24.10.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Angelina

Дан треугольник ABC.

Дан ещё один треугольник BCD, точки A и D находятся на той же стороне от прямой BC, и углы: CAB=DBC, ACB=BDC.

Дан ещё один треугольник CDE, точки B и E находятся на той же стороне от прямой CD, и углы: DBC=ECD, BDC=CED.

Дан ещё один треугольник DEF, точки C и F находятся на той же стороне от прямой DE, и углы: ECD=FDE, CED=DFE.

И так далее по алфавиту почти до конца: последний треугольник - WXY.

Чему равна длина отрезка AY, если |AB|=1, |BC|=31/2, а угол ABC=5π/6?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.