Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
60
всего попыток:
122
Найти максимальное натуральное число n такое, что n7+1 делится на n+7.
Задачу решили:
37
всего попыток:
74
Известно, что a1 < a2 < ... < a2014 простые числа и a12+a22+...+a20142 делится на 2015. Найти минимально возможное a1.
Задачу решили:
37
всего попыток:
58
Пусть Pn(x)=(x-1)(x-2)...(x-n), n=1, 2, 3, ..., 2015. Каждый Pn(x) запишем как многочлен от (x-2016) и рассмотрим свободные члены Qn. Например, P1(x)=(x-2016)+2015. Найти (Q1+Q2+...+Q2015)/2015!, ответ округлите до ближайшего целого.
Задачу решили:
81
всего попыток:
126
m и n - целые числа такие, что m2=n2+8n-3. Найдите сумму всех таких возможных n.
Задачу решили:
40
всего попыток:
242
В школе учится 100 учеников и для каждого имеется свой шкафчик. Все школьники имеют свои номера, соответствующие номерам шкафчиков. Изначально все шкафчики закрыты. Школьники приходят в порядке нумерации. Когда приходит школьник 1, то он открывает все шкафчики. Школьник 2 закрывает каждый 2-й шкафчик. Школьник 3 изменяет состояние каждого 3-го шкафчика: если открыт, то закрывает, если закрыт, то открывает. Школьник 4 изменяет состояние каждого 4-го шкафчика. И т.д. до 100-го школьника. Если какой-то школьник не приходит, то никто не выполняет за него указанную процедуру. В один из дней все шкафчики были закрыты, кроме 1-го. Сколько в этот день отсутствовало школьников?
Задачу решили:
62
всего попыток:
140
На одном берегу реки собралась компания: отец с двумя сыновьями, мать с двумя дочерьми и шериф с заключенным. Все они хотя переплать на другой берег. При этом: 1. Детишки не могут одни находиться на плоту. 2. Шериф не может оставлять заключенного с остальными. 3. Мужчина не может оставлять своих двух сыновей одних с женщиной, а женщина своих дочерей с мужчиной. 4. Плот не может плыть сам по себе, а на плоту могут находиться не более 2 человек. Какое минимальное количество раз плот причалит к противоположному берегу, чтобы перевезти всю компанию.
Задачу решили:
104
всего попыток:
332
Найти количество квадратов, которые можно получить соединив любые 4 точки на рисунке.
Задачу решили:
132
всего попыток:
145
Известно, что (TWO)2=THREE, одинаковым буквам соответствуют одинаковые цифры, разным - разные. Чему равно TWO?
Задачу решили:
30
всего попыток:
57
14 монет пронумерованы с 1 до 14. Первому игроку известно, что монеты с номерами 1,2,...,7 настоящие, а монеты с номерами 8,9,..,14 фальшивые. Обоим игрокам известно, что фальшивые монеты легче, чем настоящие (при этом все фальшивые весят одинаково, и все настоящие весят одинаково). Второму игроку неизвестно, ни сколько монет фальшивых, ни их номера. За какое минимальное количество взвешиваний на весах без гирек первый игрок может доказать второму, что монеты 1,2,...,7 - настоящие, а 8,9,..,14 фальшивые?
Задачу решили:
49
всего попыток:
99
Найти сумму всех возможных значений k таких, что 2k+3m+1=6n, все k, m и n - целые.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|