Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
56
всего попыток:
130
Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 2°. Найдите сумму абсцисс точек пересечения этих прямых с прямой y = 100 − 2x. Ответ округлите до ближайшего целого.
Задачу решили:
67
всего попыток:
209
Среди натуральных чисел n меньших 210 найдите количество таких, что n32 - 1 кратно 210.
Задачу решили:
106
всего попыток:
151
Положительные числа a, b удовлетворяют равенству ab(a + b + 1) = 25. Найдите наименьшее значение, которое может принимать выражение (a + b)(b + 1).
Задачу решили:
92
всего попыток:
103
Найти сумму всех натуральных чисел, имеющих ровно 6 делителей, сумма которых равна 3500.
Задачу решили:
80
всего попыток:
98
Если натуральное число разделить на 2, то у него станет на 30 делителей меньше, если поделить на 3, то делителей станет на 35 меньше, а если поделить на 5, то делителей станет меньшена 42 делителя меньше, чем у самого числа. Число имеет вид 2x · 3y · 5z. Чему оно равно?
Задачу решили:
85
всего попыток:
96
Известно, что при некотором a многочлен P(x) = xn-axn−2 для всех n > 2 делится на x-2. Чему равно максимальное значение a?
Задачу решили:
103
всего попыток:
129
Определите 3 последние цифры числа 79999.
Задачу решили:
38
всего попыток:
81
Известно, что для положительных действительных чисел a, b и c, верно: a2 + b2 + c2 = 5(ab+bc+ca)/2. Найдите минимум выражения (a+b+c)/(abc)1/3. Ответ укажите с точностью до 3-х знаков после запятой.
Задачу решили:
46
всего попыток:
84
Известно, что a15+a25 +...an5= 2004, ai - целые числа. Найдите минимальное положительное значение a1+a2 +...an?
Задачу решили:
40
всего попыток:
62
Пусть N равно произведению всех возможных значений (n2+nm+m2) для всех пар натуральных чисел n и m таких, что 1 ≤ n < m ≤ 100. Чему равен остаток от деления N на 101?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|