Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
55
всего попыток:
65
Любое простое число вида p=4k+1 можно единственным способом представить в виде: p = a² + b², где a<b - целые положительные числа. Например: 165100009 = 5520² + 11603². Квадраты таких простых чисел также можно представить единственным способом в виде: p² = x² + y², где x<y - целые положительные числа. Найдите два целых положительных числа x<y, для которых выполняется: 165100009² = x² + y². В качестве ответа введите оба числа подряд без пробелов: x (меньший), и сразу за ним y (больший).
Задачу решили:
37
всего попыток:
101
Функция Эйлера φ(n) определена для каждого натурального числа n как количество натуральных чисел, непревосходящих n, взаимно простых с n. Найдите сумму всех натуральных чисел n, для которых φ(n)=128.
Задачу решили:
24
всего попыток:
35
Наибольший собственный делитель натурального числа n больше на 2, чем квадрат наименьшего составного делителя n. Найдите сумму всех таких натуральных n.
Задачу решили:
14
всего попыток:
18
Назовём натуральное число остроумным, если оно начинается с цифры 5, оканчивается цифрой 1, а все остальные его цифры равны 6. Найдите количество натуральных чисел n, взаимно простых с 10 и не превосходящих 1016, для которых найдётся остроумное число, кратное n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|