img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 30
всего попыток: 49
Задача опубликована: 22.08.18 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Длина стороны правильного семиугольника равна 7. На каждой из них отмечено по 8 точек (включая вершины), разбивающих сторону на единичные отрезки. Через каждые  2 точки проведены прямые линии. Сколько получилось различных прямых.

Задачу решили: 27
всего попыток: 68
Задача опубликована: 10.10.18 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

81 оловянный солдатик построен в каре (это расстановка в виде квадрата).

Оловянные солдатики

Какое наименьшее число солдатиков можно передвинуть так, чтобы все 81 образовали каре большего размера, в сравнении с первоначальным?

Задачу решили: 57
всего попыток: 75
Задача опубликована: 21.11.18 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Между столбами А1 и А2 натянут провод длинной 48 м. Воробей вначале сел в середину А3 провода А1А2, затем прыгнул в середину А4 отрезка А2А3, затем прыгнул в середину А5 отрезка А3А4, и т.д. Прыгая так бесконечно долго, воробей стремится к некоторой точке В. Найдите расстояние А1В.

Задачу решили: 33
всего попыток: 52
Задача опубликована: 11.02.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Имеется набор равносторонних треугольников из бумаги, в котором:
n треугольников со стороной 1,
(n-1) треугольников со стороной 2,
................................................
2 треугольника со стороной (n-1),
1 треугольник со стороной n. 

Оказалось, что всеми треугольниками из этого набора можно оклеить без пробелов и наложений поверхность правильного тетраэдра, длина ребра которого является натуральным числом N. При оклейке треугольники можно перегибать через ребро тетраэдра.

Сколько треугольников в этом наборе, если N принимает наименьшее возможное значение.  

Задачу решили: 46
всего попыток: 64
Задача опубликована: 15.03.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Пространственный крест, изображенный на рисунке, составлен из семи единичных кубиков.

Домино

Ученик отметил вершины всех единичных кубиков этой фигуры и вычислил расстояния между парами различных вершин. Он утверждает, что ему удалось найти такие расстояния: √1, √2, √3, √4, √5, √6, √7, √8, √9, √10, √11, √12. Сколько ошибок допустил ученик?

Задачу решили: 42
всего попыток: 46
Задача опубликована: 26.07.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: solomon

Вычислите значение выражения \frac{lg 1\frac{1}{10}}{lg 10 \cdot lg 11}+\frac{lg 1\frac{1}{11}}{lg 11 \cdot lg 12}+...+ \frac{lg 1\frac{1}{99}}{lg 99 \cdot lg 100.

 

Задачу решили: 13
всего попыток: 30
Задача опубликована: 18.09.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

Бумажную полосу 1х50 расчертили на единичные квадраты, пронумеровали их по порядку числами от 1 до 50, после чего полосу разрезали на десять малых полос 1х5. Пять вертикальных и пять горизонтальных полос переплели друг с другом так, что единичные квадраты каждой полосы чередуются положением верх-низ. Получился числовой квадрат или матрица 5х5. Одна из возможных плетенок и соответствующая ей матрица показана на рисунке.

Плетёнка 5х5

Сколько различных матриц 5х5 может получиться? Поворот на угол кратный 90 градусам новой матрицы не дает, ориентация чисел значения не имеет.

Задачу решили: 56
всего попыток: 66
Задача опубликована: 01.01.20 08:00
Прислал: avilow img
Источник: Ростовская математическая олимпиада, II этап
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Последовательность задана рекуррентным способом: a1=2, a2=2, an+2=an+1/an. Найдите сумму 1730 первых членов этой последовательности.

Задачу решили: 26
всего попыток: 45
Задача опубликована: 26.08.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Сколько точек с целочисленными координатами находится внутри области, ограниченной параболой  у=2020-х2 и осью Ох?

Задачу решили: 36
всего попыток: 54
Задача опубликована: 28.10.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Числа натурального ряда записаны на клетчатой бумаге в форме спирали: в одной из клеток записано число 1, справа от неё в соседней клетке записано число 2, вниз от неё в соседней клетке записано число 3, и так далее, двигаясь по часовой стрелке образуется спираль из натурального ряда.

Спирали

В ней можно выделить концентрические квадратные рамки, центром которых является клетка с числом 1. Найдите сумму чисел в рамке размером 101х101.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.