Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
49
Длина стороны правильного семиугольника равна 7. На каждой из них отмечено по 8 точек (включая вершины), разбивающих сторону на единичные отрезки. Через каждые 2 точки проведены прямые линии. Сколько получилось различных прямых.
Задачу решили:
27
всего попыток:
68
81 оловянный солдатик построен в каре (это расстановка в виде квадрата). Какое наименьшее число солдатиков можно передвинуть так, чтобы все 81 образовали каре большего размера, в сравнении с первоначальным?
Задачу решили:
57
всего попыток:
75
Между столбами А1 и А2 натянут провод длинной 48 м. Воробей вначале сел в середину А3 провода А1А2, затем прыгнул в середину А4 отрезка А2А3, затем прыгнул в середину А5 отрезка А3А4, и т.д. Прыгая так бесконечно долго, воробей стремится к некоторой точке В. Найдите расстояние А1В.
Задачу решили:
33
всего попыток:
52
Имеется набор равносторонних треугольников из бумаги, в котором: Оказалось, что всеми треугольниками из этого набора можно оклеить без пробелов и наложений поверхность правильного тетраэдра, длина ребра которого является натуральным числом N. При оклейке треугольники можно перегибать через ребро тетраэдра. Сколько треугольников в этом наборе, если N принимает наименьшее возможное значение.
Задачу решили:
46
всего попыток:
64
Пространственный крест, изображенный на рисунке, составлен из семи единичных кубиков. Ученик отметил вершины всех единичных кубиков этой фигуры и вычислил расстояния между парами различных вершин. Он утверждает, что ему удалось найти такие расстояния: √1, √2, √3, √4, √5, √6, √7, √8, √9, √10, √11, √12. Сколько ошибок допустил ученик?
Задачу решили:
42
всего попыток:
46
Вычислите значение выражения .
Задачу решили:
13
всего попыток:
30
Бумажную полосу 1х50 расчертили на единичные квадраты, пронумеровали их по порядку числами от 1 до 50, после чего полосу разрезали на десять малых полос 1х5. Пять вертикальных и пять горизонтальных полос переплели друг с другом так, что единичные квадраты каждой полосы чередуются положением верх-низ. Получился числовой квадрат или матрица 5х5. Одна из возможных плетенок и соответствующая ей матрица показана на рисунке. Сколько различных матриц 5х5 может получиться? Поворот на угол кратный 90 градусам новой матрицы не дает, ориентация чисел значения не имеет.
Задачу решили:
56
всего попыток:
66
Последовательность задана рекуррентным способом: a1=2, a2=2, an+2=an+1/an. Найдите сумму 1730 первых членов этой последовательности.
Задачу решили:
26
всего попыток:
45
Сколько точек с целочисленными координатами находится внутри области, ограниченной параболой у=2020-х2 и осью Ох?
Задачу решили:
36
всего попыток:
54
Числа натурального ряда записаны на клетчатой бумаге в форме спирали: в одной из клеток записано число 1, справа от неё в соседней клетке записано число 2, вниз от неё в соседней клетке записано число 3, и так далее, двигаясь по часовой стрелке образуется спираль из натурального ряда. В ней можно выделить концентрические квадратные рамки, центром которых является клетка с числом 1. Найдите сумму чисел в рамке размером 101х101.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|