img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 13
всего попыток: 23
Задача опубликована: 24.04.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждый шаг итерации удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. На рисунке приведена кривая дракона после шести итераций.

Кривая дракона в прямоугольнике

Эта ломаная помещается в наименьший прямоугольник размером 7х11 и площадью 77. Какова площадь наименьшего прямоугольника, в котором помещает кривая дракона после 13 итераций? Рассматриваются прямоугольники, стороны которых параллельны соответствующим звеньям кривой дракона.

Подробней смотрите статью в Википедии «Кривая дракона».

Задачу решили: 11
всего попыток: 20
Задача опубликована: 05.05.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Кривая дракона, петляя по плоскости, иногда образовывает замкнутые клетки, равные единичным квадратам. На рисунке, кривая дракона после шести итераций ограничивает 11 таких клеток.

Кривая дракона в прямоугольнике

Сколько таких клеток ограничивает кривая дракона после 13 итераций?

(подробней о кривой дракона см. задачу 2485).

Задачу решили: 13
всего попыток: 52
Задача опубликована: 19.05.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Гирляндой назовем пять единичных квадратов, шарнирно соединенных диагональными вершинами в незамкнутую цепочку, например, пять квадратов нанизанные на нить (на рисунке, слева).

Шарнирные пентамино

Такие гирлянды легко сворачиваются в фигурки обычного пентамино, например, на рисунке справа показаны I-пентамино и L-пентамино, но можно получить и новые фигурки, как на рисунке самая правая фигурка. Все эти три фигурки отличаются друг от друга положением только одного зеленого квадрата, который поворачивается на угол кратный 90° относительно шарнира. Квадраты могут вращаться вокруг любого своего шарнира. Сколько различных фигурок на клетчатой плоскости можно поочередно сложить из одной гирлянды? Симметричные фигурки и фигурки, полученные поворотом новыми не считаются.

Задачу решили: 10
всего попыток: 13
Задача опубликована: 24.05.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Треугольный планшет – это доска в форме правильного треугольника со штырями, которые вбиты в узлы треугольной решетки. Имеется неограниченное количество резиновых колец, каждое из которых можно натягивать на три близлежащих штыря так, что резинка принимает контур единичного равностороннего треугольника. Требуется надеть на штыри несколько резинок так, чтобы они охватывали все штыри, при этом каждый штырь может охватывать только одна резинка. Размер планшета определяется числом штырей на одной стороне его треугольного поля.

Треугольные планшеты

На рисунке приведен планшет 9-го размера, здесь же показано, что на штыри этого планшета можно надеть резиновые кольца так, чтобы выполнялись условия задачи. Выясните, для каких планшетов размером от 2 до 100 можно надеть кольца так, чтобы выполнялись условия задачи. В ответе укажите число таких планшетов. 

+ 2
  
Задачу решили: 18
всего попыток: 22
Задача опубликована: 26.06.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

Куб 9х9х9, изображенный на рисунке справа, составлен из единичных кубиков. Эти кубики раскрашены в два цвета так, что некоторые из них образуются трехмерные кресты с общим центром (см. рис.).

Куб 29х29х29

Торцы крестов – это квадраты 1х1, 3х3, 5х5, …, которые составлены из квадратных рамок, чередующихся по цвету. Сколько синих кубиков в кубе 29х29х29, раскрашенного по такому же принципу?

Задачу решили: 21
всего попыток: 29
Задача опубликована: 14.08.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На плоскости нарисован правильный треугольник со стороной n, где n∈N. Проведены прямые, содержащие его стороны и всевозможные прямые, параллельные его сторонам и делящие стороны треугольника на единичные отрезки. На сколько частей такие прямые делят плоскость, если за основу взят треугольник со стороной 100?

Треугольник и прямые

Для примера приведена конструкция при n = 3, в которой прямые делят плоскость на 30 частей.

Задачу решили: 8
всего попыток: 26
Задача опубликована: 19.01.24 08:00
Прислал: avilow img
Источник: Клуб "Диоген"
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На рисунке изображены две равные фигуры: слева желтая фигура, сложенная из 18 желтых U-пентамино, справа – зеленая фигура, сложенная из 30 зеленых I-тримино, употребив таким образом 18+30=48 фигурок.

Две равные фигуры

Сложите две равные фигуры, одну желтую, другую зеленую, употребив суммарно наименьшее количество желтых U-пентамино и зеленых I-тримино.

Задачу решили: 11
всего попыток: 53
Задача опубликована: 31.01.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

На рисунке слева изображены три несимметричных пентамино, справа приведена фигура, сложенная из этих пентамино и имеющая ось симметрии.

Симметриксы из трех пентамино

Сколько различных фигур, имеющих ось симметрии, можно сложить из этих трех пентамино?

Задачу решили: 16
всего попыток: 21
Задача опубликована: 05.07.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

На плоскости через точку А проведено 29 прямых, через точку B проведено 34 прямых. Каждая прямая первого пучка пересекают каждую прямую второго пучка, и наоборот. Прямых, принадлежащих обоим пучкам, нет. На сколько частей делят плоскость все эти прямые?

Например, на рисунке две прямые пучка А и три прямые пучка B делят плоскость на 15 частей.

Два пучка прямых

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.