img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik добавил решение задачи "Линейка и окружность" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 3
всего попыток: 4
Задача опубликована: 02.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Корнем многочлена P(x) называют решение уравнения P(x) = 0.
Обозначим через Pn многочлен, коэффициенты которого являются десятичными знаками числа n.
Например, P5703(x) = 5x3 + 7x2 + 3.
Ясно, что
• Pn(0) – это последняя цифра числа n,
• Pn(1) – это сумма цифр числа n,
• Pn(10) – это само число n.
Если n оканчивается на ноль, то Pn имеет корень, равный нулю. Обозначим через Y(k) количество таких натуральных n, не превышающих k, для которых соответствующий многочлен Pn имеет хотя бы один целый корень, отличный от нуля. Например, Y(100 000) = 5545.
Чему равно Y(1016)?

Задачу решили: 5
всего попыток: 6
Задача опубликована: 13.08.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Рассмотрим многочлен N(p,q) = ΣTn*pn, где  p, q - натуральные числа, сумма берется для 0≤n≤q,  а коэффициенты Tn получены с помощью генератора случайных чисел:
S0 = 290797
Sn+1 = Sn2 mod 50515093
Tn = Sn mod p
Пусть Nfac(p,q) - факториал числа N(p,q), а N0(p,q) - количество нулей, на которое заканчивается число Nfac(p,q).
Например N0(5,10) = 735554.
Найдите остаток от деления N0(5,107) на 525.

Задачу решили: 10
всего попыток: 11
Задача опубликована: 03.09.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Назовем простое число p числом Панаитопола (Panaitopol), если его можно представить в виде

p = (x4-y4)/(x3+ y3), где x и y — натуральные числа.

Найдите последние 8 цифр суммы чисел Панаитопола, не превышающих 5×1015.

 

 

Задачу решили: 4
всего попыток: 4
Задача опубликована: 15.10.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Как известно, каждый член последовательности Фибоначчи является суммой предыдущих двух. Начав с чисел 1 и 2, получим последовательность 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…

Каждое натуральное число может быть единственным образом записано в виде суммы некоторого набора различных чисел Фибоначчи, не содержащего пары соседних чисел Фибоначчи. Например, 100 = 3 + 8 + 89.

Такую сумму называют представлением Цекендорфа.

Обозначим через z(n) число слагаемых в представлении Цекендорфа для натурального числа n. Тогда z(5)=1, z(14)=2, z(100)=3.

z(n) для всех шестизначных n равна 7236250.

Найдите ∑z(n) для всех 17-значных n.

Задачу решили: 4
всего попыток: 15
Задача опубликована: 19.04.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Рассмотрим последовательность y0, y1, y2,..., где yi - 32-битные случайные целые числа, т.е. 0≤yi<232, и все значения y равновероятны.

Последовательность xi задается рекурсивно следующим образом:

  • x0 = 0 и
  • xi = xi-1 | yi-1, при i >0. (Символ  | обозначает побитовое ИЛИ)

Ясно, что в конце концов появится такой индекс N для которого xi окажется равным 232-1 при всех i≥N.

Найдите математическое ожидание величины N2.

Результат умножьте на миллион и округлите вниз до целого.

 
Задачу решили: 1
всего попыток: 2
Задача опубликована: 29.04.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg

В этой задаче рассматривается еще одна игра, похожая на ним, где два игрока по очереди берут камни из двух куч. Каждым ходом игрок берет камни из одной кучи в количестве, кратном количеству камней в другой куче. Как обычно, проигрывает тот, кто не может сделать очередной ход, т. е. когда  в одной из куч камней не осталось.

Опишем начальную позицию в виде упорядоченной пары чисел. Например, пара (6, 14) соответствует положению, при котором в меньшей куче 6 камней, а в большей — 14. В этом случае первый игрок может взять из большей кучи 6 или 12 камней.

Выигрышной называется позиция, которая позволяет первому игроку выиграть при верном выборе стратегии. Остальные позиции называются проигрышными. Например, позиции (1,5), (2,6) и (3,12) — выигрышные, поскольку первый игрок может первым же ходом забрать все камни из второй кучи.

Позиции (2,3) и (3,4) — проигрышные, поскольку при любом ходе первого игрока второй участник получает выигрышную позицию.

Обозначим через Z(N) сумму (yi-xi) для всех проигрышных позиций (xi,yi), 0 < xi< yi ≤ N. Можно проверить, что Z(10) = 27 и Z(104) = 24319983959.

Найдите остаток от деления Z(1016) на 710.

 
Задачу решили: 1
всего попыток: 1
Задача опубликована: 06.05.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Рассмотрим пару последовательностей an и s n , заданных следующим образом:

a1 = 1, s1 = 1, an = sn-1 mod n, sn = sn-1+ an×n.

(Здесь и далее "x mod y" означает остаток от деления x на y.)

Первые 10 элементов последовательности an:

1,1,0,3,0,3,5,4,1,9.

Первые 10 элементов последовательности sn:

1,3,3,15,15,33,68,100,109,199.

Обозначим через h(N,M) количество таких пар (p,q), для которых

1≤p≤q≤N  и  (sp + sp+1 +… + sq-1 + sq ) mod M = 0

Можно проверить, что h(10,10)=5, а соответствующие пары – (1,6), (4,5), (4,9), (6,9) и (8,8).

h(104,103)= 107796.

Найдите h(1012,106).

 
Задачу решили: 1
всего попыток: 3
Задача опубликована: 03.06.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Бесконечная последовательность a(n) определена для всех целых n следующим образом: 

a(n)=\left\{\begin{matrix}

1, n<0\\

\sum_{i=1}^{\infty}\frac{a(n-i)}{i!}, n\geq 1

\end{matrix}\right.

Легко видеть, что

a(0)=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...=e-1,

a(1)=\frac{e-1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...=2e-3,

a(2)=\frac{2e-3}{1!}+\frac{e-1}{2!}+\frac{1}{3!}+...=\frac{7}{2}e-6,

где e = 2,7182818... – основание натурального логарифма. 

 

Общий член последовательности a(n) можно записать в виде

\frac{A(n)e-B(n)}{n!}

с натуральными коэффициентами A(n) и B(n).

Например, 

a(10)=\frac{328161643 e - 652694486}{10!}, A(10)= 328161643, B(10)= 652694486

Найдите остаток от деления A(109) + B(109) на 77 777 777. 

 
Задачу решили: 1
всего попыток: 1
Задача опубликована: 22.07.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Конечные последовательности натуральных чисел {a1, a2,..., an} длины n обладают следующими свойствами:
  • a1 = 6
  • При всех 1 ≤ i < n : φ(ai) ≤ φ(ai+1) < ai < ai+1,
где φ(x) – функция Эйлера.
Пусть S(N) — количество таких последовательностей с an ≤ N.
Например, при N=10 существует 5 таких последовательностей: {6}, {6, 8}, {6, 8, 9}, {6, 8, 10} и {6, 10}. Поэтому  S(10) = 5.
Можно проверить, что S(80) = 1195518449 и S(10 000) mod 108 = 60687582, где x mod y означает остаток от деления x на y.
Найдите S(20 000 000) mod 108
Задачу решили: 2
всего попыток: 5
Задача опубликована: 09.09.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Пусть  a, b, c – натуральные числа, а функция F(n) определена следующим образом:
F(n) = n - c при n > b
F(n) = F(a + F(a + F(a + F(a + n)))) при n ≤ b. 
Пусть также 
Z(a,b,c)=\sum_{n=a}^{b}F(n)
Тогда, например, при a = 50, b = 2000 и c = 40, получим F(0) = 3240, F(2000) = 2040,
а Z(50, 2000, 40) = 5044935.
Найдите остаток от деления Z(217, 721, 127) на 987654321.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.