img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MMM добавил комментарий к задаче "Дедушка и полтаблетки" (Математика):
+ 0

Задача 518. Подсчет последовательностей

постоянный адрес задачи: http://www.diofant.ru/problem/2458/
показать код для вставки на свой сайт >>
Задачу решили: 1
всего попыток: 1
поделиться задачей:

Задача опубликована: 22.07.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Конечные последовательности натуральных чисел {a1, a2,..., an} длины n обладают следующими свойствами:
  • a1 = 6
  • При всех 1 ≤ i < n : φ(ai) ≤ φ(ai+1) < ai < ai+1,
где φ(x) – функция Эйлера.
Пусть S(N) — количество таких последовательностей с an ≤ N.
Например, при N=10 существует 5 таких последовательностей: {6}, {6, 8}, {6, 8, 9}, {6, 8, 10} и {6, 10}. Поэтому  S(10) = 5.
Можно проверить, что S(80) = 1195518449 и S(10 000) mod 108 = 60687582, где x mod y означает остаток от деления x на y.
Найдите S(20 000 000) mod 108
 
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)

Обсуждение Правила >>

Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.