img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid решил задачу "Пат коню" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 131
всего попыток: 259
Задача опубликована: 22.03.09 19:38
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Удивительно, но имеется всего 3 числа, которые могут быть представлены в виде 4-х степеней составляющих их цифр (1=14 - не считается):

1634 = 14 + 64 + 34 + 44
8208 = 84 + 24 + 04 + 84
9474 = 94 + 44 + 74 + 44

Найдите все числа, которые могут быть представлены в виде суммы 5-х степеней составляющих их цифр. Чему равно произведение всех этих чисел?

Задачу решили: 222
всего попыток: 587
Задача опубликована: 22.04.09 18:22
Прислал: admin img
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: HoLoD (Владимир Морозов)

Чему равен максимальный периметр прямоугольного треугольника со сторонами, являющимися натуральными числами, меньший 1 миллиона?

Задачу решили: 82
всего попыток: 150
Задача опубликована: 11.05.09 15:21
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vedensky (Кирилл Веденский)

Дата, записанная в виде ДДММГГГГ, является палиндромом, если она читается одинаково слева направо и справа налево, такой датой  является, например, 26111162 (26 ноября 1162 года). Сколько таких дат палиндромов было с начала новой эры до 2009 года в современном летоисчислении?

Задачу решили: 48
всего попыток: 157
Задача опубликована: 15.05.09 23:41
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Назовем простое число единичным если его двоичная запись содержит только единицы. Если выписать все единичные простые числа, получим ряд: 3, 7, 31, 127, ... Найдите 14-й член данного ряда.

Задачу решили: 47
всего попыток: 59
Задача опубликована: 27.05.09 00:08
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

На первом рисунке треугольное "магическое" кольцо. Его "магическое" свойство заключается в том, что суммы чисел, расположенных вдоль каждого отрезка, одинаковы. В данном случае они равны 9.

Выберем наименьшее "внешнее" число, в данном случае 4, и соответствующую ему тройку (4,3,2 в данном примере). Начиная с этой тройки, будем двигаться по часовой стрелке, выписывая тройки одну за другой: 4,3,2; 6,2,1; 5,1,3. Получившаяся последовательность однозначно определяется исходным "магическим" кольцом.

Треугольное "магическое" кольцо можно заполнить 8 различными способами, а сумма троек может быть 9, 10, 11 или 12:

Сумма   Последовательность 
9          4,2,3; 5,3,1; 6,1,2
9          4,3,2; 6,2,1; 5,1,3
10        2,3,5; 4,5,1; 6,1,3
10        2,5,3; 6,3,1; 4,1,5
11        1,4,6; 3,6,2; 5,2,4
11        1,6,4; 5,4,2; 3,2,6
12        1,5,6; 2,6,4; 3,4,5
12        1,6,5; 3,5,4; 2,4,6

Каждую последовательность можно объединить в 9-значное число; минимальное такое число для 3-угольного кольца  равно 146362524.

 

 

Если числа от 1 до 10, расставить в пятиугольном кольце на втором рисунке, можно аналогичным образом сформировать 16-значную или 17-значную последовательность. Определите минимальное 17-значное число, которое можно получить описанным способом из "магического" пятиугольного кольца.

Задачу решили: 23
всего попыток: 79
Задача опубликована: 29.05.09 09:45
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Вы собираете теннисные мячи в корзины, сотоящие из трех отделений, при этом раскладываете их по следующим правилам:

1. во всех отделениях всех корзин разное (ненулевое) количество мячей;

2. во всех корзинах в сумме по отделениям одинаковое количество мячей;

3. количество мячей в корзинах минимально возможное для данного количества корзин.

Например, если у вас 2 корзины, то в отделения первой корзины последовательно разещаем 1, 3 и 7 мячей, а в отделения второй - 2, 4 и 5 мячей. В результате в каждой корзине будет по 11 мячей, и это число минимально возможное.

У вас 100 корзин, найти сумму мячей в одной корзине.

Задачу решили: 16
всего попыток: 101
Задача опубликована: 01.06.09 08:34
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральные числа a ≤ b ≤ c ≤ d такие, что 1000 <= a,b,c,d <= 1000000 и a+b, a+c, a+d, b+c, b+d, c+da+b+c+d являются квадратами некоторых целых чисел. Сколько таких различных четверок чисел существует?

Задачу решили: 33
всего попыток: 63
Задача опубликована: 01.06.09 18:55
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Лучшее решение: casper

Пусть f(n) для натурального числа n равно количеству различных представлений в виде сумм степеней 2, при этом каждая степень не может использоваться более двух раз. Например, f(10)=5 так как 10=1+1+8=1+1+4+4=1+1+2+2+4=2+4+4=2+8.
Чему равно f(2009)?

Задачу решили: 18
всего попыток: 30
Задача опубликована: 07.06.09 19:30
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

У вас есть кубики размера 1x1x1, из них - 6 прозрачные и 90 кубиков имеют в центре красную бусинку. Сколько существует способов размещения кубиков внутри параллелепипеда размером 4x4x6 таких, что во всех рядах по всем трем направлениям находится четное количество бусинок (ноль - также четное число)?

Задачу решили: 43
всего попыток: 59
Задача опубликована: 08.06.09 11:06
Прислал: admin img
Вес: 2
сложность: 2 img
баллы: 100

Найти минимальное n, такое что в записи n! встречаются все двухзначные числа. 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.