Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
1
всего попыток:
2
В этой задаче рассматривается еще одна игра, похожая на ним, где два игрока по очереди берут камни из двух куч. Каждым ходом игрок берет камни из одной кучи в количестве, кратном количеству камней в другой куче. Как обычно, проигрывает тот, кто не может сделать очередной ход, т. е. когда в одной из куч камней не осталось. Опишем начальную позицию в виде упорядоченной пары чисел. Например, пара (6, 14) соответствует положению, при котором в меньшей куче 6 камней, а в большей — 14. В этом случае первый игрок может взять из большей кучи 6 или 12 камней. Выигрышной называется позиция, которая позволяет первому игроку выиграть при верном выборе стратегии. Остальные позиции называются проигрышными. Например, позиции (1,5), (2,6) и (3,12) — выигрышные, поскольку первый игрок может первым же ходом забрать все камни из второй кучи. Позиции (2,3) и (3,4) — проигрышные, поскольку при любом ходе первого игрока второй участник получает выигрышную позицию. Обозначим через Z(N) сумму (yi-xi) для всех проигрышных позиций (xi,yi), 0 < xi< yi ≤ N. Можно проверить, что Z(10) = 27 и Z(104) = 24319983959. Найдите остаток от деления Z(1016) на 710.
Задачу решили:
1
всего попыток:
1
Рассмотрим пару последовательностей an и s n , заданных следующим образом: a1 = 1, s1 = 1, an = sn-1 mod n, sn = sn-1+ an×n. (Здесь и далее "x mod y" означает остаток от деления x на y.) Первые 10 элементов последовательности an: 1,1,0,3,0,3,5,4,1,9. Первые 10 элементов последовательности sn: 1,3,3,15,15,33,68,100,109,199. Обозначим через h(N,M) количество таких пар (p,q), для которых 1≤p≤q≤N и (sp + sp+1 +… + sq-1 + sq ) mod M = 0 Можно проверить, что h(10,10)=5, а соответствующие пары – (1,6), (4,5), (4,9), (6,9) и (8,8). h(104,103)= 107796. Найдите h(1012,106).
Задачу решили:
2
всего попыток:
9
Любое натуральное число может быть разбито на слагаемые вида 2i×3j, где i,j ≥0, но в этой задаче мы будем рассматривать лишь те разбиения, у которых ни одно слагаемое не кратно другому. В дальнейшем будем называть такие разбиения специальными. Например, разбиение числа 17 = 2 + 6 + 9 = (21×30 + 21×31 + 20×32) не будет специальным, поскольку 6 кратно 2. Разбиение 17 = 16 + 1 = (24×30 + 20×30) тоже не специальное, так как 16 кратно 1. У числа 17 есть только одно специальное разбиение, а именно 8 + 9 = (23×30 + 20×32). Некоторые числа имеют несколько специальных разбиений. Например, число 11 имеет два специальных разбиения: 11 = 2 + 9 = (21×30 + 20×32) 11 = 8 + 3 = (23×30 + 20×31) Обозначим через P(n) количество специальных разбиений числа n. Так, P(11) = 2. Можно подсчитать, что сумма простых чисел q<100, для которых P(q)=2 равна 641. Найдите сумму простых q < 1000000, для которых P(q)=2.
Задачу решили:
1
всего попыток:
1
Конечные последовательности натуральных чисел {a1, a2,..., an} длины n обладают следующими свойствами:
где φ(x) – функция Эйлера.
Пусть S(N) — количество таких последовательностей с an ≤ N.
Например, при N=10 существует 5 таких последовательностей: {6}, {6, 8}, {6, 8, 9}, {6, 8, 10} и {6, 10}. Поэтому S(10) = 5.
Можно проверить, что S(80) = 1195518449 и S(10 000) mod 108 = 60687582, где x mod y означает остаток от деления x на y.
Найдите S(20 000 000) mod 108.
Задачу решили:
2
всего попыток:
5
Пусть a, b, c – натуральные числа, а функция F(n) определена следующим образом:
Задачу решили:
3
всего попыток:
5
Последовательность Голомба {G(n)} определяют как единственную неубывающую последовательность натуральных чисел, содержащую ровно G(n) вхождений каждого натурального числа n.
Можно подсчитать, что G(210) = 87, G(220) = 6320, и что ΣG(2n) = 857297 при 1 ≤ n < 30. Найдите ΣG(2n)для 1 ≤ n < 60.
Задачу решили:
6
всего попыток:
8
Рассмотрим нечетное число 225 = 32 × 52.
Задачу решили:
5
всего попыток:
6
Возьмем натуральное число k, и будем выписывать последовательность рациональных чисел ai = xi/yi следующим образом: 1/20 → 2/19 → 3/18 = 1/6 → 2/5 → 3/4 → 4/3 → 5/2 → 6/1 = 6 Поэтому f(20) = 6. Можно проверить, что f(2) = 2, f(3) = 1 и Σf(k3) = 18764 для простых k, не превышающих 100. Найдите Σf(k3) для простых k, не превышающих 5×106.
Задачу решили:
10
всего попыток:
22
Возьмем матрицу n×n, выберем из нее n элементов так, чтобы никакие два из них не стояли в одной строке или столбце, и найдем их сумму. Минимальное значение такой суммы будем называть матричной суммой для данной матрицы. 7 53 183 439 863 матричной суммой будет число 1075=7+79+343+343+303. Найдите матричную сумму для матрицы: 7 53 183 439 863 497 383 563 79 973 287 63 343 169 583
Задачу решили:
8
всего попыток:
16
Запишем число 57 в системах счисления по основанию 4 и 28: 5710=3214=2128 В обоих случаях
При выполнении этих условий будем говорить, что число имеет специальный вид в данной системе счисления. Так, число 57 имеет специальный вид в системах счисления с основаниями 4 и 28. Существует пять натуральных чисел 1<n<500, имеющих специальный вид хотя бы в двух системах счисления, а именно 57, 121, 209, 321 и 457. Их сумма равна 1165. Найдите сумму n (1<n<1012), имеющих специальный вид хотя бы в двух системах счисления.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|