img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 81
всего попыток: 115
Задача опубликована: 08.05.09 17:03
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Для некоторых натуральных чисел m и n (m < n) последние три цифры десятичной записи чисел 2009n и 2009m совпадают. Чему равна минимальная сумма m+n?

Задачу решили: 42
всего попыток: 77
Задача опубликована: 08.05.09 17:03
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Пусть a и b – натуральные числа, a < b. При делении a² + b² на a + b получается частное q и остаток r. Найти количество всех разных чисел b из пар (a,b), для которых q² + r = 2009.

Задачу решили: 86
всего попыток: 136
Задача опубликована: 11.05.09 12:16
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: chingiz

Числа Фибоначчи задаются следующей рекуррентной формулой: fn+2=fn+1+fn. При этом f0=0, f1=1.

Сколько всего чисел Фибоначчи f таких, что 1010 < f < 10100.

Это открытая задача (*?*)
Задача опубликована: 11.05.09 13:21
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 200
Лучшее решение: Anton_Lunyov

В матрице размера 10x10 в каждой строке стоят целые числа от 0 до 9, при этом числа в строках не повторяются. Найти наибольший определитель такой матрицы.

Задачу решили: 35
всего попыток: 61
Задача опубликована: 11.05.09 13:45
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Любое натуральное число N можно представить в виде произведения степеней простых чисел:

N=p1k1*p2k2*...*pmkm

Найти максимум

p1k1+p2k2+...+pmkm

для всех N < 1010.

Задачу решили: 97
всего попыток: 167
Задача опубликована: 11.05.09 13:58
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: pakko

Разместите простые числа в ряд по возрастанию: 2, 3, 5, 7, 11, 13,... Суперпростые числа - это числа в ряду простых чисел, порядковый номер которых также является простым числом.

Сколько всего суперпростых чисел меньших 107?

Задачу решили: 25
всего попыток: 50
Задача опубликована: 11.05.09 14:39
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти максимальное число, меньшее 107, которое имеет наибольшее количество представлений в виде суммы различных простых чисел.

Задачу решили: 58
всего попыток: 87
Задача опубликована: 11.05.09 14:59
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: chingiz

Рассмотрим все числа, которые могут быть представлены в виде

5n1+5n2+5n3+...,

где n1, n2, n3 - различные натуральные числа. Упорядочим их по возрастанию, 5, 25, 30, 125, 130, 150,... Какое число окажется на тысячном месте?

Задачу решили: 82
всего попыток: 150
Задача опубликована: 11.05.09 15:21
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vedensky (Кирилл Веденский)

Дата, записанная в виде ДДММГГГГ, является палиндромом, если она читается одинаково слева направо и справа налево, такой датой  является, например, 26111162 (26 ноября 1162 года). Сколько таких дат палиндромов было с начала новой эры до 2009 года в современном летоисчислении?

Задачу решили: 43
всего попыток: 95
Задача опубликована: 11.05.09 18:24
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Функция Эйлера φ(n) определяется так: для любого натурального n>1 её значение равно количеству натуральных чисел, меньших n и взаимно простых с n, по определению φ(1)=1, в частности φ(9)=6 (числа 1, 2, 4, 5, 7, 8 - взаимно просты с числом 9). 

Значение функции φ(87109) = 79180 интересно тем, что оно может быть получено перестановкой цифр в аргументе функции 87109. Найти сумму всех аргументов, меньших 1 миллиона, обладающих таким же свойством.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.