img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 39
всего попыток: 49
Задача опубликована: 30.11.20 08:00
Прислал: avilow img
Источник: По мотивам книги И.М. Гельфанд "Функции и гра...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На рисунке представлены графики шести функций, содержащие операцию «целая часть числа» (антье).

Функции и графики

Графики обозначены латинскими буквами. Ниже приведены формулы этих функций, которые обозначены цифрами. Установите соответствие между графиками функций и их формулами.

В ответе запишите шестизначное число, которое получается после замены букв в слове ABCDEF соответствующими им цифрами. 

Задачу решили: 30
всего попыток: 49
Задача опубликована: 04.12.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите минимальное значение a2+b2, где a и b - действительные числа, для которых уравнение x4+ax3+bx2+ax+1=0 имеет по крайней мере один действительный корень.

Задачу решили: 30
всего попыток: 35
Задача опубликована: 09.12.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Найдите количество непрерывных функций f(x), определенных для всех действительных x и удовлетворяющих уравнения xf(y)+yf(x)=(x+y)f(x)f(y) для произвольных x и y.

Задачу решили: 18
всего попыток: 32
Задача опубликована: 11.12.20 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В кубе ABCDA1B1C1D1 концы отрезка KF лежат на диагоналях AD1 и B1C и он параллелен плоскости основания ABCD. Точка М – точка пересечения отрезка KF с диагональной плоскостью A1BCD1. Геометрическое множество точек М образует линию, которая делит прямоугольник A1BCD1 на две части. Найдите отношение площади меньшей части к площади большей.

Задачу решили: 22
всего попыток: 31
Задача опубликована: 25.12.20 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Пусть x1, x2, x3, x4, x5 - натуральные числа, которые удовлетворяют соотношениям:
x1 + x2 + x3 + x4 + x5 = 1000,
x1 - x2 + x3 - x4 + x5 > 0,
x1 + x2 - x3 + x4 - x5 > 0,
-x1 + x2 + x3 - x4 + x5 > 0,
x1 - x2 + x3 + x4 - x5 > 0,
-x1 + x2 - x3 + x4 + x5 > 0,
и при этом значение (x1 + x3)x2+x4 - наибольшее.

Скольким сушествует таких различных наборов (x1, x2, x3, x4, x5)?

Задачу решили: 17
всего попыток: 68
Задача опубликована: 01.01.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В мусульманском календаре их было 11, в григорианском календаре 13. Каким будет 14-ый год?

Задачу решили: 29
всего попыток: 40
Задача опубликована: 06.01.21 08:00
Прислал: fortpost img
Источник: «Математическое просвещение»
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: solomon

Решите уравнение x2 + y2 = (x + 1)3 в целых числах.
В ответе введите сумму различных значений x.

Задачу решили: 29
всего попыток: 82
Задача опубликована: 13.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Какое .максимальное число шаров радиуса 1/2 можно вложить в прямоугольный параллелепипед размером 10×10×1.

Задачу решили: 35
всего попыток: 60
Задача опубликована: 15.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Найдите все целые решения уравнения: p5+p3+2=q2-q. В ответе укажите значение суммы всех q.

Задачу решили: 27
всего попыток: 42
Задача опубликована: 20.01.21 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Множество значений суммы S = a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d), где a, b, c, d - положительные действительные числа расположены внутри некоторого минимально возможного отрезка действительной оси. Укажите середину этого отрезка.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.