Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
39
всего попыток:
49
На рисунке представлены графики шести функций, содержащие операцию «целая часть числа» (антье). Графики обозначены латинскими буквами. Ниже приведены формулы этих функций, которые обозначены цифрами. Установите соответствие между графиками функций и их формулами. В ответе запишите шестизначное число, которое получается после замены букв в слове ABCDEF соответствующими им цифрами.
Задачу решили:
30
всего попыток:
49
Найдите минимальное значение a2+b2, где a и b - действительные числа, для которых уравнение x4+ax3+bx2+ax+1=0 имеет по крайней мере один действительный корень.
Задачу решили:
30
всего попыток:
35
Найдите количество непрерывных функций f(x), определенных для всех действительных x и удовлетворяющих уравнения xf(y)+yf(x)=(x+y)f(x)f(y) для произвольных x и y.
Задачу решили:
18
всего попыток:
32
В кубе ABCDA1B1C1D1 концы отрезка KF лежат на диагоналях AD1 и B1C и он параллелен плоскости основания ABCD. Точка М – точка пересечения отрезка KF с диагональной плоскостью A1BCD1. Геометрическое множество точек М образует линию, которая делит прямоугольник A1BCD1 на две части. Найдите отношение площади меньшей части к площади большей.
Задачу решили:
22
всего попыток:
31
Пусть x1, x2, x3, x4, x5 - натуральные числа, которые удовлетворяют соотношениям: Скольким сушествует таких различных наборов (x1, x2, x3, x4, x5)?
Задачу решили:
17
всего попыток:
68
В мусульманском календаре их было 11, в григорианском календаре 13. Каким будет 14-ый год?
Задачу решили:
29
всего попыток:
40
Решите уравнение x2 + y2 = (x + 1)3 в целых числах.
Задачу решили:
29
всего попыток:
82
Какое .максимальное число шаров радиуса 1/2 можно вложить в прямоугольный параллелепипед размером 10×10×1.
Задачу решили:
35
всего попыток:
60
Найдите все целые решения уравнения: p5+p3+2=q2-q. В ответе укажите значение суммы всех q.
Задачу решили:
27
всего попыток:
42
Множество значений суммы S = a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d), где a, b, c, d - положительные действительные числа расположены внутри некоторого минимально возможного отрезка действительной оси. Укажите середину этого отрезка.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|