img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 764
всего попыток: 1940
Задача опубликована: 20.03.09 23:20
Прислал: demiurgos img
Источник: Собеседование в 57-й школег. Москвы
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Lisney_Anton (Антон Лисный)

В ряд стоят 30 стульев. Время от времени подходит человек и садится на один из свободных стульев. При этом один из его соседей (если такие есть) встает и уходит. Какое наибольшее число стульев может оказаться занятым, если сначала все они свободны?

Задачу решили: 1785
всего попыток: 4194
Задача опубликована: 25.03.09 19:19
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: silentsquall

Улитка за 6 минут залезает с постоянной скоростью вверх по столбику на 30 см, а следующие 4 минуты она отдыхает и сползает под собственной тяжестью на 15 см. Высота столбика 1 метр, а наверху лежит конфета. Через сколько минут улитка её достанет?

Задачу решили: 1538
всего попыток: 2055
Задача опубликована: 25.03.09 18:23
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Sertyh (Николай Мельниченко)

В Южной Америке есть круглое озеро, в центре которого каждый год появляется цветок Виктории Регии (стебель поднимается со дна, а лепестки лежат на воде, как у кувшинки). Каждые сутки площадь цветка увеличивается вдвое, и через 30 дней он, наконец, покрывает все озеро, лепестки осыпаются, семена опускаются на дно. А вот через сколько дней площадь цветка составляет половину площади озера?

Задачу решили: 655
всего попыток: 2445
Задача опубликована: 26.03.09 17:09
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

В общежитии 30 жилых комнат. Из года в год первого апреля жители этих комнат повторяют один и тот же розыгрыш. Они просыпаются по очереди и, если дверь их собственной комнаты на месте, то они снимают дверь какой-нибудь другой из этих комнат и уносят её в подвал. Если же дверь их комнаты унесена, то они забирают из подвала любую дверь и вешают её на место своей. (Если ни одно из этих действий невозможно, то они не делают ничего). Какое наибольшее количество дверей может оказаться в подвале после того, как все проснутся?

Задачу решили: 1469
всего попыток: 2235
Задача опубликована: 28.03.09 15:19
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: sibdoma (Павел Сивак)

Сколько нужно провести матчей по олимпийской системе (проигравший вылетает), чтобы из 30 футбольных команд определить победителя?

Задачу решили: 1313
всего попыток: 3356
Задача опубликована: 28.03.09 15:19
Прислал: demiurgos img
Источник: Олимпиада Ростовской области
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Oregu (Oleg Prophet)

В пруду плавают 30 голодных щук. Есть больше нечего, и им приходится пожирать друг друга. Щука считается сытой, если она съела не менее трёх щук (сытых или голодных — неважно). Какое наибольшее число щук смогут насытиться?

Задачу решили: 846
всего попыток: 1697
Задача опубликована: 28.03.09 16:51
Прислал: demiurgos img
Источник: Московская олимпиада школьников по математике...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Xardas (Алексей Кузнецов)

Васин счёт в банке составляет 2009 рублей. Банкоматы этого банка могут совершать операции только двух видов: снимать 700 рублей или класть 910 рублей. Какую максимальную сумму Вася может снять со счета, если других денег у него нет?

Задачу решили: 264
всего попыток: 502
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: solomon

В выборах в стоместный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов (т.е. если одна из партий набрала в x раз больше голосов, чем другая, то и мест в парламенте она получит в x раз больше). После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т.п. не было) и каждая партия получила целое число мест. При этом Партия участников проекта "Диофант" набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?

Задачу решили: 291
всего попыток: 684
Задача опубликована: 10.04.09 22:38
Прислал: demiurgos img
Вес: 1
сложность: 5 img
баллы: 100
Темы: алгоритмыimg

В тюрьму поместили 20 узников. Надзиратель сказал им:

«Я дам вам вечер поговорить друг с другом, а утром построю всех в колонну, надену каждому на голову красный, жёлтый или зелёный колпак, а потом спрошу каждого в указанном вами порядке, каков цвет надетого на него колпака. Сколько будет правильных ответов, стольких из вас я отпущу на свободу. Остальных скормлю крокодилам. Кого конкретно — решит жребий.

Каждый узник будет слышать все ответы, но сможет увидеть колпаки всех тех и только тех, кто стоит впереди в колонне. Отвечать нужно обязательно, причём только "красный", "жёлтый" или "зелёный", и сразу — пауза перед вопросом будет достаточной для размышлений. Таковы условия, если замечу жульничество — скормлю крокодилам всех!»

Какому максимальному числу счастливчиков узники смогут гарантировать освобождение?

Задачу решили: 62
всего попыток: 484
Задача опубликована: 10.04.09 22:37
Прислал: demiurgos img
Источник: Сообщено А.Гориновым
Вес: 5
сложность: 5 img
баллы: 100

В тюрьму поместили 6 узников.  Надзиратель сказал им:

«Я дам вам сегодня поговорить друг с другом, а потом рассажу по отдельным камерам, и общаться вы больше не сможете. Завтра я вас по очереди отведу в комнату, где стоят 6 закрытых ящиков, в которые я положу разные номера от 1 до 6 (в каждый ящик по номеру), и разрешу открыть 3 любые ящика в произвольном порядке. Каждый из вас должен открыть ящик с номером своей очереди, а какой именно номер лежит в ящике вы увидите, как только его откроете. Если каждому из вас удастся открыть ящик с нужным номером, то я всех выпущу на свободу. А если хоть кто-то потерпит неудачу — скормлю всех крокодилам. Не волнуйтесь, я великодушен — перед приходом следующего узника я буду просто закрывать все ящики и не буду ни переставлять их, ни перекладывать номера. Я даже могу всех вас сегодня отвести в эту комнату и разрешить пометить ящики! А номера в них я положу потом.»

Какова максимальная вероятность освобождения узников при их правильной стратегии?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.