Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
29
всего попыток:
40
Решите уравнение x2 + y2 = (x + 1)3 в целых числах.
Задачу решили:
31
всего попыток:
54
Элементами матрицы 3х3 являются натуральные числа от 1 до 9, взятые по одному разу. Найдите наибольшее значение определителя этой матрицы.
(Задачу придумал и решил сам, в печати не приходилось встречать такую задачу. Не уверен, что ее до сих пор никто не придумал.)
Задачу решили:
14
всего попыток:
16
Рассмотрим множество чисел M = {1, 2, 3, ..., 214 - 1}. Определим на этом множестве операцию «циклического сложения»: Например: 16380 ⊕ 7 = [(16380+7) / 214] + (16380+7) mod 214 = 1 + 3 = 4 Докажите, что эта операция определяет группу на множестве M и найдите её нейтральный элемент? Введите его в двоичной системе счисления.
Задачу решили:
22
всего попыток:
56
В квадратной таблице 360х360 строки и столбцы «пронумерованы» числами от 1° до 360°. В каждой ячейке этой таблицы записано число, равное произведению синуса «номера» строки на косинус «номера» столбца. Сколько рациональных чисел в этой таблице?
Задачу решили:
19
всего попыток:
25
Дана функциональная последовательность fn(x): Найти предельную функцию g(x) при n стремящемся к бесконечности.
Задачу решили:
12
всего попыток:
16
Гипотрохоида — плоская кривая, образуемая фиксированной точкой, находящейся на фиксированной радиальной прямой окружности, катящейся по внутренней стороне неподвижной окружности. Гипотрохоида задается тремя параметрами: R — радиус неподвижной окружности, r — радиус вращающейся окружности, d — расстояние от фиксированной точки до центра вращающейся окружности. На рисунке приведена гипотрохоида с параметрами R=11, r=7, d=11, которая делит плоскость на 35 частей. На сколько частей разделит плоскость гипотрохоида с параметрами R = p101, r = p100, d = p101, где p100 и p101 — простые числа с номерами 100 и 101?
Задачу решили:
12
всего попыток:
14
Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади трёх из них образуют арифметическую прогрессию с разностью 1. Сколько существует таких квадратов с целочисленной стороной?
Задачу решили:
9
всего попыток:
12
Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади a, b, c трёх из них образуют арифметическую прогрессию с разностью 1. Найти наибольшую площадь d внутреннего треугольника такую, что d – точный квадрат.
Задачу решили:
14
всего попыток:
21
Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади трех цветных треугольников, кроме белого, – соседние члены арифметической прогрессии с разностью 1. Сколько существует таких квадратов с целочисленной стороной?
Задачу решили:
19
всего попыток:
39
Сколько действительных корней имеет уравнение 100 cosx =√x?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|