img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 29
всего попыток: 40
Задача опубликована: 06.01.21 08:00
Прислал: fortpost img
Источник: «Математическое просвещение»
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: solomon

Решите уравнение x2 + y2 = (x + 1)3 в целых числах.
В ответе введите сумму различных значений x.

Задачу решили: 31
всего попыток: 54
Задача опубликована: 05.04.21 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Элементами матрицы 3х3 являются натуральные числа от 1 до 9, взятые по одному разу. Найдите наибольшее значение определителя этой матрицы.

(Задачу придумал и решил сам, в печати не приходилось встречать такую задачу. Не уверен, что ее до сих пор никто не придумал.)
Задачу решили: 14
всего попыток: 16
Задача опубликована: 29.11.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Рассмотрим множество чисел M = {1, 2, 3, ..., 214 - 1}. Определим на этом множестве операцию «циклического сложения»:
xy = [(x+y) / 214] + (x+y) mod 214
(целая часть от деления x+y на 214 + остаток от деления x+y на 214).

Например:
123  456 = [(123+456) / 214] + (123+456) mod 214  = 0 + 579 = 579

16380  7 = [(16380+7) / 214+ (16380+7) mod 214  = 1 + 3 = 4

Докажите, что эта операция определяет группу на множестве M и найдите её нейтральный элемент? Введите его в двоичной системе счисления.

Задачу решили: 22
всего попыток: 56
Задача опубликована: 23.05.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

В квадратной таблице 360х360 строки и столбцы «пронумерованы» числами от 1° до 360°. В каждой ячейке этой таблицы записано число, равное произведению синуса «номера» строки на косинус «номера» столбца. Сколько рациональных чисел в этой таблице?

Задачу решили: 19
всего попыток: 25
Задача опубликована: 21.11.22 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: aaa_uz
Дана функциональная последовательность fn(x):
f0(x) = 0;
fn+1(x) = (x+fn(x)) / (x*(x+ fn(x))+1).
Найти предельную функцию g(x) при n стремящемся к бесконечности.
В ответе введите значение: 29*g(2) - g(82)
Задачу решили: 12
всего попыток: 16
Задача опубликована: 24.02.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Гипотрохоида — плоская кривая, образуемая фиксированной точкой, находящейся на фиксированной радиальной прямой окружности, катящейся по внутренней стороне неподвижной окружности. Гипотрохоида задается тремя параметрами: R — радиус неподвижной окружности, r — радиус вращающейся окружности, d — расстояние от фиксированной точки до центра вращающейся окружности. На рисунке приведена гипотрохоида с параметрами R=11, r=7, d=11, которая делит плоскость на 35 частей.

Деление плоскости на части

На сколько частей разделит плоскость гипотрохоида с параметрами R = p101, r = p100, d = p101, где p100 и p101 — простые числа с номерами 100 и 101?

Задачу решили: 12
всего попыток: 14
Задача опубликована: 03.03.23 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади трёх из них образуют арифметическую прогрессию с разностью 1.

Квадрат и четыре треугольника

Сколько существует таких квадратов с целочисленной стороной?

Задачу решили: 9
всего попыток: 12
Задача опубликована: 08.03.23 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: user033 (Олег Сopoкин)

Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади a, b, c трёх из них образуют арифметическую прогрессию с разностью 1.

Квадрат и четыре треугольника - 2

Найти наибольшую площадь d внутреннего треугольника такую, что d – точный квадрат.

Задачу решили: 14
всего попыток: 21
Задача опубликована: 17.03.23 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Lec

Квадрат разделён отрезками на четыре треугольника целочисленной площади.

Квадрат и четыре треугольника - 3

Площади трех  цветных треугольников, кроме белого, – соседние члены арифметической прогрессии с разностью 1.  Сколько существует таких квадратов  с целочисленной стороной?  

Задачу решили: 19
всего попыток: 39
Задача опубликована: 19.04.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Сколько действительных корней имеет уравнение 100 cos=√x?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.