img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 369
всего попыток: 3937
Задача опубликована: 04.03.09 22:57
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: pstrabykin

Каково максимально возможное количество сфер, каждая из которых касается всех четырёх плоскостей, являющихся продолжениями граней некоторого тетраэдра? (Тетраэдр — это треугольная пирамида.)

Задачу решили: 188
всего попыток: 2145
Задача опубликована: 11.03.09 11:22
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Mnohogrannik

В пространстве даны четыре точки, не лежащие в одной плоскости.  Сколько существует различных параллелепипедов, для каждого из которых все данные точки являются вершинами? (Различные — как множества; например, равные параллелепипеды, но сдвинутые друг относительно друга, тоже считаются различными.)

Задачу решили: 605
всего попыток: 1058
Задача опубликована: 14.03.09 20:26
Прислал: demiurgos img
Источник: А.В.Жуков, П.И.Самовол, М.В.Аппельбаум "Элега...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: ktulhu (Михаил Селянин)

Длины пяти последовательных сторон описанного около окружности шестиугольника равны 5, 6, 7, 8 и 9. Найдите длину шестой стороны.

+ 71
+ЗАДАЧА 20. Гангстеры (Н.Б.Васильев)
  
Задачу решили: 410
всего попыток: 1554
Задача опубликована: 14.03.09 20:26
Прислал: demiurgos img
Источник: "Квант", 1991
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: ODG (Игорь Логвинов)

50 гангстеров стреляют друг в друга одновременно. Каждый стреляет в ближайшего к нему гангстера (или в одного из ближайших, если несколько человек находятся на равном расстоянии от него) и убивает его наповал. Найдите наименьшее возможное количество убитых. (Гангстеры — это различные точки на плоскости.)

Задачу решили: 293
всего попыток: 668
Задача опубликована: 21.03.09 18:18
Прислал: demiurgos img
Источник: Олимпиада Технион (Хайфа)
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Galina

Какая цифра стоит на 100-м месте после запятой в десятичной записи числа (44+2009)2009?

Задачу решили: 116
всего попыток: 395
Задача опубликована: 02.04.09 15:13
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

На окружности отмечена точка, из которой по часовой стрелке циркулем делается засечка. Из полученной точки в том же направлении тем же радиусом делается вторая засечка, и так повторяется 2009 раз. После этого окружность разрезается во всех 2009 засечках, и получается 2009 дуг. Какое максимально возможное число дуг различной длины может при этом получиться?

Задачу решили: 319
всего попыток: 728
Задача опубликована: 06.04.09 23:48
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

На 50 деревянных правильных пятиугольников, прибитых к полу, натягивается резиновое кольцо, которое принимает форму некоторого многоугольника. Каково минимальное число его вершин?

(Условие задачи изменено, поскольку прежняя формулировка вызывала много вопросов. )
+ 40
+ЗАДАЧА 37. Аэродромы (Г.А.Гальперин, переработка demiurgos)
  
Задачу решили: 132
всего попыток: 436
Задача опубликована: 04.04.09 21:16
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Crazy_666

В некоторой стране 25 аэродромов. С каждого из них вылетел самолёт и приземлился на самом удалённом от места старта аэродроме. В результате все 25 самолётов оказались на n аэродромах. Какие значения из промежутка от 1 до 25 не может принимать n? В ответе укажите сумму найденных (невозможных) значений.

Землю можно считать плоской, а маршруты — прямыми. Все расстояния между аэродромами предполагаются различными. Число n зависит только от взаимного расположения аэродромов.

Задачу решили: 194
всего попыток: 660
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: gpariska (Галина Парижская)

Наибольший общий делитель (НОД) натуральных чисел m и n равен 1. Каково максимально возможное значение НОД чисел m+100n и n+100m?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.