img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 272
всего попыток: 297
Задача опубликована: 10.07.09 19:58
Прислал: Rep img
Источник: И.Ф.Шарыгин "Геометрия, задачник9-11"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

В равнобедренной трапеции средняя линия равна 10, а диагонали взаимно перпендикулярны. Найти площадь трапеции.

Задачу решили: 129
всего попыток: 277
Задача опубликована: 16.07.09 00:35
Прислал: twister img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Трёх одинаковых роботов расположили в вершинах правильного треугольника со стороной 21 сантиметр. Скорость каждого робота 2 сантиметра в секунду. Роботов настроили так, чтобы после включения каждый гнался за следующим по часовой стрелке (в любой момент вектор скорости направлен на цель). Сколько сантиметров преодолеет каждый из роботов после их одновременного включения и до того, как они все поймают друг друга?

Задачу решили: 133
всего попыток: 154
Задача опубликована: 19.07.09 20:50
Прислал: Rep img
Источник: "Квант"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Найдите площадь треугольника по радиусам его трёх вневписанных окружностей: ra=4, rb=6, rс=12 (ra — это радиус окружности, которая касается стороны a и продолжений сторон b и c).

Задачу решили: 177
всего попыток: 323
Задача опубликована: 28.07.09 18:12
Прислал: Rep img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом. А на какое наибольшее число в этом случае всегда делится число p+4 при p>5?

Задачу решили: 180
всего попыток: 231
Задача опубликована: 28.07.09 18:12
Прислал: Rep img
Источник: И.Ф.Шарыгин "Геометрия, 9-11"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Квадрат со стороной 60 вписан в окружность. Найдите сторону квадрата, вписанного в один из полученных сегментов.

Задачу решили: 89
всего попыток: 280
Задача опубликована: 31.07.09 13:58
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sweetale

На 101 шаре написаны различные натуральные числа от 2 до 102, а на 101 ящике — различные натуральные числа от 1 до 101. Сколькими способами можно разложить шары по ящикам (в каждый ящик по одному шару) так, чтобы номер шара делился на номер ящика?

Задачу решили: 143
всего попыток: 595
Задача опубликована: 05.08.09 12:53
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: iVantus

Гусеница сидит внутри закрытой коробки длиной 75 см, шириной 32 см и высотой 32 см, посередине боковой квадратной стенки на высоте 3 см от дна. Посередине противоположной стенки на 3 см ниже крышки в коробке есть маленькое отверстие, через которое гусеница хочет выбраться на свободу.

Какое наименьшее число сантиметров ей придётся преодолеть, чтобы вылезти из отверстия? (Ответ округлите до ближайшего целого числа.)

Задачу решили: 75
всего попыток: 682
Задача опубликована: 10.08.09 15:49
Прислал: demiurgos img
Источник: Всесоюзная олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

На клетчатой бумаге со стороной клетки 5 мм нарисована окружность радиуса 10 см, не проходящая через вершины клеток и не касающаяся сторон клеток. Какое минимальное число клеток она может пересекать?

Задачу решили: 104
всего попыток: 182
Задача опубликована: 11.08.09 17:41
Прислала: Hasmik33 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

В треугольнике ABC с площадью 420 от вершин к противоположным сторонам проведены отрезки AK, BL, CM так, что их концы делят стороны в отношении 2:1 (BK=2·KC, CL=2·LAAM=2·MB). Найдите площадь треугольника, ограниченного этими отрезками.

Задачу решили: 88
всего попыток: 201
Задача опубликована: 13.08.09 00:31
Прислал: Dremov_Victor img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Andreo (Андрей Желудев)

Натуральные числа от 1 до 13 записаны в строку. Сколькими способами можно переставить их так, чтобы ни одно число не осталось на своём месте?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.