Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
99
всего попыток:
202
На какое минимальное число частей нужно разрезать два неравных квадрата, чтобы из полученных частей можно было сложить квадрат (а лишних частей при этом не осталось)?
Задачу решили:
57
всего попыток:
246
У Вас есть три одинаковых пластмассовых шарика, и Вы хотите выяснить, после броска с какого этажа 119-этажного небоскрёба на них начинают появляться трещины. (Например, если сбросить с 20-го, то трещины появляются, а на 19-м ещё нет.) Чтобы определить, появились ли трещины, нужно выйти на улицу и осмотреть шарик. Прежде чем выйти на улицу, Вы можете сбросить с разных этажей все имеющиеся в наличии нетреснувшие шарики. Разрешается выйти на улицу не более, чем n раз. При каком минимальном значении n ещё возможно гарантированно определить, после броска с какого именно этажа шарики начинают покрываются трещинами. Учтите, что шарик может покрыться трещинами и при падении с первого этажа, а может остаться целым и при падении с последнего.
(См. похожую задачу "Небоскрёб и стеклянные шарики")
Задачу решили:
81
всего попыток:
119
Автобусный билет называется счастливым, если сумма трёх первых цифр его шестизначного номера равна сумме трёх последних цифр. Доказать, что сумма номеров всех счастливых билетов делится на 13.
Задачу решили:
55
всего попыток:
74
Существуют ли 2009 последовательных натуральных чисел, среди которых ровно 10 простых?
Задачу решили:
161
всего попыток:
191
Длины сторон остроугольного треугольника — последовательные целые числа. На среднюю по длине сторону опущена высота, которая делит её на некоторые отрезки. Найти разность их длин. (Точнее, её абсолютную величину.)
Задачу решили:
98
всего попыток:
138
На n карточках написаны все числа от 1 до n (на каждой карточке — одно число). Карточки разложили на две стопки так, что сумма номеров любых двух карточек, лежащих в одной стопке, не является квадратом целого числа. Найти наибольшее значение n.
Задачу решили:
24
всего попыток:
35
Большой прямоугольник разрезан на конечное число маленьких. (Стороны всех прямоугольников вертикальны или горизонтальны.) Известно, что у каждого маленького прямоугольника длина хотя бы одной стороны — целое число. Верно ли, что тогда и у большого прямоугольника хотя бы одна сторона имеет целую длину? (Если верно — доказать, если нет — привести пример.)
Задачу решили:
134
всего попыток:
222
Найти наименьшее значение r, при котором справедливо утверждение: любая замкнутая плоская ломаная длины 60 лежит в круге радиуса r.
Задачу решили:
155
всего попыток:
364
Найти максимальное семизначное число, которое состоит из трёх натуральных чисел, образующих арифметическую прогрессию и написанных друг за другом без пробелов в том же порядке, как и в прогрессии. (Пример такого числа: 8090100. Естественно, имеются в виду не числа, а их десятичные записи.)
Задачу решили:
80
всего попыток:
150
Пусть b(1)<b(2)<b(3)<... — такая строго возрастающая последовательность целых положительных чисел, что b(b(n))=3n для любого n. Найдите b(2009).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|