img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 462
всего попыток: 532
Задача опубликована: 11.03.09 19:42
Прислал: demiurgos img
Источник: Сообщено С.В.Репиным
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Zlyndin

Придумайте шестизначное число, обладающее следующим свойством: при его умножении на 2, 3, 4, 5 и 6 цифры в нём лишь переставляются, но не меняются.

Задачу решили: 582
всего попыток: 653
Задача опубликована: 20.03.09 11:26
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 34

Найти разность (1+2+3+...+n)2 − (13+23+33+...+n3) при n=200910.

Задачу решили: 293
всего попыток: 668
Задача опубликована: 21.03.09 18:18
Прислал: demiurgos img
Источник: Олимпиада Технион (Хайфа)
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Galina

Какая цифра стоит на 100-м месте после запятой в десятичной записи числа (44+2009)2009?

Задачу решили: 116
всего попыток: 395
Задача опубликована: 02.04.09 15:13
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

На окружности отмечена точка, из которой по часовой стрелке циркулем делается засечка. Из полученной точки в том же направлении тем же радиусом делается вторая засечка, и так повторяется 2009 раз. После этого окружность разрезается во всех 2009 засечках, и получается 2009 дуг. Какое максимально возможное число дуг различной длины может при этом получиться?

+ 40
+ЗАДАЧА 37. Аэродромы (Г.А.Гальперин, переработка demiurgos)
  
Задачу решили: 132
всего попыток: 436
Задача опубликована: 04.04.09 21:16
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Crazy_666

В некоторой стране 25 аэродромов. С каждого из них вылетел самолёт и приземлился на самом удалённом от места старта аэродроме. В результате все 25 самолётов оказались на n аэродромах. Какие значения из промежутка от 1 до 25 не может принимать n? В ответе укажите сумму найденных (невозможных) значений.

Землю можно считать плоской, а маршруты — прямыми. Все расстояния между аэродромами предполагаются различными. Число n зависит только от взаимного расположения аэродромов.

Задачу решили: 264
всего попыток: 502
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: solomon

В выборах в стоместный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов (т.е. если одна из партий набрала в x раз больше голосов, чем другая, то и мест в парламенте она получит в x раз больше). После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т.п. не было) и каждая партия получила целое число мест. При этом Партия участников проекта "Диофант" набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?

Задачу решили: 194
всего попыток: 660
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: gpariska (Галина Парижская)

Наибольший общий делитель (НОД) натуральных чисел m и n равен 1. Каково максимально возможное значение НОД чисел m+100n и n+100m?

Задачу решили: 138
всего попыток: 1031
Задача опубликована: 12.04.09 09:55
Прислал: demiurgos img
Источник: Сообщено А.Г.Беляевым
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Вам нужно узнать задуманное число от 1 до 2000. Можно задавать вопросы, на которые тот, кто задумал число, отвечает либо «да», либо «нет». Какое минимальное число вопросов нужно задать, чтобы достоверно определить задуманное число, если отвечающий может и солгать, но не более одного раза?

+ 52
+ЗАДАЧА 53. Хитрая улитка I (Н.Н.Константинов)
  
Задачу решили: 202
всего попыток: 752
Задача опубликована: 12.04.09 10:03
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: lime (Kozinson Nik)

Улитка ползет вперед по прямой с непостоянной скоростью. Назад она не поворачивает, но может останавливаться. Несколько человек наблюдают за ней по очереди: каждый из них (кроме первого) начинает наблюдение позже, чем начинает предыдущий, но раньше, чем он заканчивает. Каждый из наблюдателей следит за улиткой ровно 10 минут и замечает, что за это время она проползла ровно 10 см. Количество наблюдателей неизвестно, но общее время их наблюдения составляет 1 час: последний заканчивает наблюдать ровно через час после того, как начинает первый.

Какое максимальное расстояние может проползти улитка за 1 час наблюдений при этих условиях? (Ответ дать в сантиметрах.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.