img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MMM добавил комментарий к задаче "Дедушка и полтаблетки" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 15
всего попыток: 18
Задача опубликована: 24.04.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Укажите количество примитивных пифагоровых треугольников ABC, у которых тангенс каждого из углов A/2, B/2, C/2 представим в виде p/q, где p и q целые, и 0 < p ≤ q ≤ 10.

Задачу решили: 15
всего попыток: 38
Задача опубликована: 26.04.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В пифагоров треугольник вписаны две равных окружностей с целочисленным значением радиусов так, что они касались между собой, гипотенузой и одна из них с одним катетом, другая с другим катетом. Найти наименьший периметр треугольника.

Задачу решили: 16
всего попыток: 22
Задача опубликована: 01.05.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Из каждой вершины треугольника проведены к противоположной стороне две чевианы, делящие её (противоположную сторону) на 3 равных отрезка.

Недетская классика

Исходный треугольник разделился на 19 частей: 12 треугольников, 3 четырёхугольника, 3 пятиугольника и 1 шестиугольник.

Найдите отношение площади 6-угольника к площади 5-угольника.

Задачу решили: 16
всего попыток: 21
Задача опубликована: 06.05.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральный ряд «удвоили», то есть каждое число записали дважды. Затем полученный ряд разбили на множества: M1, M2, M3, …, так, что множество Mn содержит n чисел. Ниже вертикальными черточками показано разбиение начала «удвоенного» натурального ряда на множества: 1,|1, 2,|2, 3, 3,|4, 4, 5, 5,|6, 6, 7, 7, 8,|8, 9, 9, 10, 10, 11,|11, 12, 12, 13, 13, Найдите сумму чисел в множестве M2024, укажите ее в ответе.

Задачу решили: 14
всего попыток: 18
Задача опубликована: 08.05.24 08:00
Прислал: TALMON img
Источник: Ибн Альберт
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Назовём натуральное число остроумным, если оно начинается с цифры 5, оканчивается цифрой 1, а все остальные его цифры равны 6.

Найдите количество натуральных чисел n, взаимно простых с 10 и не превосходящих 1016, для которых найдётся остроумное число, кратное n.

Задачу решили: 21
всего попыток: 23
Задача опубликована: 10.05.24 08:00
Прислал: vochfid img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: old

В стозначном числе 12345678901234567890…1234567890 вычеркнули все цифры на четных местах. В полученном пятидесятизначном числе снова вычеркнули все цифры на четных местах. Такое вычеркивание продолжалось до тех пор, пока не осталась одна цифра а.

А если в том же стозначном числе вычеркнули все цифры на нечетных местах, и в полученном пятидесятизначном числе снова вычеркнули все цифры также на нечетных местах, и такое вычеркивание продолжалось до тех пор, пока не осталась одна цифра b.

В ответ введите двузначное число 10а + b.

Задачу решили: 9
всего попыток: 40
Задача опубликована: 13.05.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Укажите количество центрально-симметричных фигур, каждую из которых можно сложить не меньше, чем двумя способами из одних и тех же трёх различных пентамино.

Задачу решили: 8
всего попыток: 66
Задача опубликована: 20.05.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино?

Каждая фигура считается столько раз, сколькими разными способами её можно сложить. Например, такая фигура

Три пентамино

считается два раза.

Задачу решили: 23
всего попыток: 24
Задача опубликована: 24.05.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Отрезок биссектрисы из вершины острого угла прямоугольного треугольника до точки пересечения биссектрис равен 5. Прилежащий к этой биссектрисе катет равен 7. Найти площадь треугольника.

Задачу решили: 22
всего попыток: 24
Задача опубликована: 27.05.24 08:00
Прислал: solomon img
Источник: И. Вайнштейн
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найти отношение площади описанной окружности к сумме площадей вписанной и вневписанных окружностей прямоугольного треугольника.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.