Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
96
Десять пронумерованных фишек расположены в форме треугольника. За один ход любые три соседние фишки можно повернуть вокруг их общего центра на угол 120° так, чтобы они циклически переместились, причем, как по часовой стрелке, так и против неё. Здесь всего девять троек фишек, которые можно поворачивать. За какое, наименьшее число ходов можно из данного слева расположения фишек получить расположение, изображенное справа?
Задачу решили:
23
всего попыток:
48
Внутри квадрата расположены N точек так, что никакие три из N+4 точек (N поставленных и 4 вершины квадрата) не лежат на одной прямой. Некоторые из этих N+4 точек соединены отрезками так, что все отрезки не пересекаются (но могут иметь общие концы). Какое минимальное число точек необходимо поставить,чтобы оказалось не менее 2020 отрезков (не считая сторон квадрата)?
Задачу решили:
21
всего попыток:
59
Цифоы на табло состоят из линейных световых сегментов, как показано на рисунке. При переключении цифр часть сегментов загорается, часть гаснет, например, чтобы переключить 3 на 4, нужно провести 3 операции - один сегмент включить и два погасить. Чтобы последовательно показать все цифры и вернуться к начальной (01234567890), то необходимо некоторое количество операций. Найдите такую последовательность цифр (должны присутствовать все цифры по одному разу, кроме крайних - они показываются 2 раза), что число операций для их последовательного переключения было бы минимальным. Если таких последовательностей несколько, то укажите ту, которая представляет наименьшее число.
Задачу решили:
39
всего попыток:
48
Найти сумму всех натуральных четырехзначных чисел, в десятичной записи которых участвуют только цифры 1, 2, 3, 4, 5, причем каждая встречается не более одного раза?
Задачу решили:
40
всего попыток:
50
Сколько существует натуральных пятизначных чисел, которые заканчиваются на 6 и делятся на 3?
Задачу решили:
33
всего попыток:
51
Сколько существует натуральных пятизначных чисел, делящихся на 3, в десятичной записи которых встречается цифра 6?
Задачу решили:
34
всего попыток:
55
Сколько раз за последние 400 лет по григорианскому календарю 1 января выпадало на воскресенье?
Задачу решили:
37
всего попыток:
43
В выражении DONALD+GERALD = ROBERT каждой букве соответствует одна цифра от 0 до 9. Известно, что D=5. В качестве ответа запишите все цифры буквами в порядке от 0 до 9.
Задачу решили:
27
всего попыток:
30
Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению. Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.
Задачу решили:
24
всего попыток:
78
Найдите в порядке возрастания 2020-е число среди всех натуральных чисел, сумма цифр которых равна 2020.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|