Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
34
всего попыток:
48
Внутри окружности проведены три хорды зигзагом АВ, ВС, CD. Равные по длине хорды AB и CD при продолжении в направлении В и D пересекаются в точке Е. Прямая ЕО (О - центр окружности) пересекает хорду ВС в точке F так,что |BF|:|FC|=4/9. Найти отношение |ЕВ|/|ВА|.
Задачу решили:
48
всего попыток:
64
Вокруг каждой черной клетки шахматной доски описана окружность. Какая доля шахматной доски покрыта полученными кругами? Ответ укажите в процентах, округлив до целого.
Задачу решили:
50
всего попыток:
57
Вершины квадрата PQRS, лежат на сторонах остроугольного треугольника ABC. Вершины P и Q лежат на стороне AB, вершина R лежит на стороне BC, а вершина S лежит на стороне AC. Длина стороны квадрата равна 4, а |AB|=8. Надите площадь треугольника?
Задачу решили:
33
всего попыток:
55
В прямоугольном треугольнике АВС (угол С - прямой) на гипотенузе отмечена точка К так,что отрезок СК делит биссектрису BD пополам. В треугольнике АСК все углы имеют целочисленные значения в градусах, два из которых являются нечетными числами и относятся друг другу в отношении 1:3. Найти значение угла ВАС в градусах.
Задачу решили:
31
всего попыток:
50
В равнобедренном (не равностороннем) треугольнике АВС (|АВ|=|ВС|) биссектрисы AF и BD пересекаются в точке О. Отношение площади треугольника AOD к площади BOF равно m:n, отношение |АВ|:|АС|=k. Найти k для наименьшего равнобедренного треугольника, если известно, что m, n и k являются квадратами натурального числа.
Задачу решили:
48
всего попыток:
57
В египетском треугольнике 3, 4, 5 из прямого угла высота делит его на два треугольника. Найти отношение периметра основного треугольника к сумме радиусов окружностей, вписанных во все три треугольника.
Задачу решили:
22
всего попыток:
42
В треугольнике с целочисленными сторонами две биссектрисы делятся точкой пересечения в отношениях m:1 и n:1 (m,n - целые). Найдите наибольшее значение K=(m+n). В ответ введите наименьший периметр треугольника для найденного K.
Задачу решили:
51
всего попыток:
60
Длины двух сторон треугольника равны 31 и 22. Медианы, проведенные к этим сторонам, перпендикулярны. Найти длину третьей стороны.
Задачу решили:
23
всего попыток:
48
Внутри квадрата расположены N точек так, что никакие три из N+4 точек (N поставленных и 4 вершины квадрата) не лежат на одной прямой. Некоторые из этих N+4 точек соединены отрезками так, что все отрезки не пересекаются (но могут иметь общие концы). Какое минимальное число точек необходимо поставить,чтобы оказалось не менее 2020 отрезков (не считая сторон квадрата)?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|