img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid решил задачу "Период функций" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 98
всего попыток: 148
Задача опубликована: 28.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Angelina

Число 2003/(2^2003) записано в виде конечной десятичной дроби. Какая цифра у него стоит на четвертом месте с конца?

Задачу решили: 123
всего попыток: 148
Задача опубликована: 17.12.12 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков 2012
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: leonid (Леонид Шляпочник)

В мешке 100 котов — черных, белых и серых. Количество чёрных котов больше, чем удвоенное количество белых; утроенное количество белых котов больше, чем учетверённое количество серых; утроенное количество серых котов больше количества чёрных. Сколько котов черного цвета в мешке?

Задачу решили: 94
всего попыток: 186
Задача опубликована: 31.12.12 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков 2012
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: TALMON (Тальмон Сильвер)

Каждый житель острова людоедов принадлежит к одному из двух племён: рыцарей, которые всегда говорят правду, или лжецов, которые всегда лгут. Однажды 1000 островитян встали в круг, и каждый заявил: «Оба моих соседа не из моего племени». Какое наибольшее количество рыцарей могло стоять в кругу?

Задачу решили: 74
всего попыток: 93
Задача опубликована: 07.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Zoxan

Имеется три последовательных чётных числа. У первого из них нашли наибольший чётный собственный делитель, у второго — наибольший нечётный собственный делитель, у третьего — опять наибольший собственный чётный делитель. Известно, что сумма трёх полученных делителей быть равна 2013. Чему равно первое число последовательности ? (Делитель натурального числа называется собственным, если он отличен от 1 и этого числа)

Задачу решили: 114
всего попыток: 120
Задача опубликована: 11.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В параллелограмме ABCD со стороной AB = 1 точка M — середина стороны BC, а угол AMD составляет 90 градусов. Найдите сторону BC.

Задачу решили: 81
всего попыток: 146
Задача опубликована: 14.01.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Число назовем хорошим, если оно 20-значное и любое другое 20-значное число с такой же суммой цифр больше него. Сколько существует хороших чисел?

Задачу решили: 72
всего попыток: 111
Задача опубликована: 16.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Два лыжника ходят на лыжах по кольцевой трассе, половина которой представляет с собой подъем в гору, а половина — спуск с горы. На подъёме их скорости одинаковы и вчетверо меньше их скоростей на спуске. Минимальное отставание второго лыжника от первого равно 4 км, а максимальное — 13 км. Найдите длину трассы.

Задачу решили: 119
всего попыток: 177
Задача опубликована: 23.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Из квадрата вырезали меньший квадрат, одна из сторон которого лежит на стороне исходного квадрата. Периметр полученного восьмиугольника на 40% больше периметра исходного квадрата. На сколько процентов его площадь меньше площади исходного квадрата?

Задачу решили: 88
всего попыток: 138
Задача опубликована: 01.02.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: putout (Дмитрий Лебедев)

В стране лжецов и рыцарей (рыцари всегда говорят правду, лжецы всегда лгут) десяти людям выдали различные числа от 1 до 10. Потом каждого спросили: «Делится ли ваше число на 2?». Утвердительный ответ дали 3 человека. На вопрос «Делится ли ваше число на 4?» утвердительный ответ дали 6 человек. На вопрос «Делится ли ваше число на 5?» утвердительно ответили 2 человека. Найти произведение чисел, которое получили лжецы.

Задачу решили: 119
всего попыток: 365
Задача опубликована: 15.02.13 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите минимальное время в секундах, за которое можно поджарить 7 котлет, если на сковороде умещается 6 котлет, и с каждой стороны котлету нужно жарить ровно 5 минут.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.