img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 76
всего попыток: 262
Задача опубликована: 05.06.09 17:15
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

В далёкой стране к власти пришёл военный диктатор, который хочет стать президентом, победив на демократических выборах, организованных по следующей системе. В первом туре все избиратели объединяются в равные по численности группы, и от каждой группы большинством голосов избирается представитель для голосования во втором туре. Во втором туре все избранные в первом туре представители объединяются в равные группы и в каждой группе выбирают её представителя для голосования в третьем туре. И так далее: в последнем туре представители избирают президента. В стране ровно 5 760 000 избирателей, среди которых n человек безоговорочно поддерживают диктатора (поскольку состоят в регулярной армии). При каком минимальном n можно так организовать выборы, чтобы диктатор гарантированно был избран президентом? (При равенстве голосов в следующий тур проходят независимые кандидаты.)

Диктатор сам заранее определяет количество туров и сколько представителей будут содержать группы в каждом туре — это число может меняться от тура к туру; он также может распределить своих сторонников по группам так, как ему выгодно. Любой избиратель может голосовать за себя, а сам диктатор входит в число n своих сторонников.

Задачу решили: 89
всего попыток: 173
Задача опубликована: 03.07.09 22:37
Прислал: demiurgos img
Источник: В.И.Арнольд "Задачи для детей от 5 до 15 лет"...
Вес: 1
сложность: 4 img
баллы: 100
Лучшее решение: fedyakov

Рассмотрим десятичные записи степеней двойки: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,... и составим последовательность, состоящую из их первых цифр: 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4... Каждая цифра появляется среди первых n членов полученной последовательности с некоторой частотой, зависящей от n. Например, при n=12 частота появления 1 равна 1/4, 2 — 1/4, 3 — 1/12, 4 — 1/6, 5 — 1/12, 6 — 1/12, 8 — 1/12, а цифры 7 и 9 вообще не встречаются. Найдите число, обратное к предельной (при n→∞) частоте появления семёрки. Ответ округлите до ближайшего целого числа.

Задачу решили: 51
всего попыток: 250
Задача опубликована: 10.09.09 00:05
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Гусеница сидит внутри закрытой коробки высотой 24 см посередине её вертикального ребра. Посередине самого дальнего от гусеницы вертикального ребра в коробке есть маленькое отверстие, через которое гусеница хочет выбраться на свободу. Известно, что к отверстию ведут n различных кратчайших путей равной длины. При каких длине и ширине коробки значение максимально и чему оно равно? В ответе укажите сумму длин в см всех n кратчайших путей гусеницы до отверстия при наибольшем значении n.

Задачу решили: 73
всего попыток: 215
Задача опубликована: 30.09.09 08:25
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Сумма n нечётных чисел совпадает с их произведением. Какие значения может принимать n? В ответе введите число возможных значений n, удовлетворяющих неравенству 1 ≤ n ≤ 2009.

+ 4
+ЗАДАЧА 235. 10 из 2009 (Г.А.Гальперин)
  
Задачу решили: 55
всего попыток: 74
Задача опубликована: 06.10.09 14:03
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Loks

Существуют ли 2009 последовательных натуральных чисел, среди которых ровно 10 простых?

Задачу решили: 93
всего попыток: 217
Задача опубликована: 02.12.10 08:00
Прислал: Busy_Beaver img
Источник: Putnam Competition
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: emm76

Чему равна последняя цифра числа [1020000/(10100+3)], где [x] означает "целая часть числа x"?

Задачу решили: 50
всего попыток: 142
Задача опубликована: 11.01.11 08:00
Прислал: demiurgos img
Источник: Всероссийская олимпиада
Вес: 1
сложность: 4 img
баллы: 100

Две треугольные пирамиды центрально симметричны относительно общей вершины, объём каждой пирамиды — 2010. Найдите объём фигуры, состоящей из середин всех отрезков, концы которых принадлежит разным пирамидам.

Задачу решили: 20
всего попыток: 132
Задача опубликована: 24.01.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Точка A лежит вне прямой a, на которой отмечены 2011 различных точек. Известно, что расстояние от точки A до прямой a, а также между любыми двумя из всех упомянутых 2012 точек является целым числом. Найдите наименьшее возможное расстояние между прямой a и точкой A.

Задачу решили: 36
всего попыток: 159
Задача опубликована: 25.02.11 08:00
Прислал: ZARIF img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Shamil

Натуральные числа a и b таковы, что число — целое и . Каков максимально возможный наибольший общий делитель чисел a и b?

(Задача отредактирована, как предложил Vkorsukov.)
Задачу решили: 25
всего попыток: 42
Задача опубликована: 28.02.11 08:00
Прислал: Busy_Beaver img
Источник: Putnam Competition
Вес: 1
сложность: 4 img
баллы: 100

Пусть b — натуральное число, большее единицы. Для каждого натурального числа n определим d(n) как количество цифр числа n, записанного в системе счисления с основанием b. Определим последовательность f(n) следующим образом: f(1)=1, f(2)=2, ..., f(n) = n·f(d(n)). При каких значениях b ряд сходится? В ответе укажите сумму всех таких значений.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.