img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 76
Задача опубликована: 31.08.15 08:00
Прислал: Sam777e img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

С вершины небольшой горы к ее подножью проложена железная дорога с боковым тупиком, вмещающим 10 вагонов. Все возможные направления движения показаны на картинке стрелками.

vagonchiki.png

На вершине горы находятся 10 вагонов с номерами от 1 до 10, но их порядок неизвестен. Работа машиниста Вовы - свозить по одному вагоны так, чтобы внизу они оказались в обычном порядке: 1, 2, ..., 10. Для сортировки можно пользоваться тупиком. На картинке показаны два случая, когда всего 5 вагонов - в одном варианте Вова может выполнить задание, в другом - нет. Найдите вероятность того, что Вова не сможет выполнить задание (для 10 вагонов).

Задачу решили: 28
всего попыток: 51
Задача опубликована: 04.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100

Даны два правильных тетраэдра с ребрами длины 21/2, переводящихся один в другой при центральной симметрии. Пусть F — множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры F.

Задачу решили: 42
всего попыток: 47
Задача опубликована: 25.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

У многогранника, описанного около сферы, большой гранью будем называть такую, что проекция сферы на плоскость целиком попадает в грань. Какое максимальное число больших гранией может быть у многогранника?

Задачу решили: 31
всего попыток: 42
Задача опубликована: 30.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На встречу выпускников пришло 45 человек. Оказалось, что любые двое из них, имеющие одинаковое число знакомых среди пришедших, не знакомы друг с другом. Какое наибольшее число пар знакомых могло быть среди участвовавших во встрече?

Задачу решили: 34
всего попыток: 58
Задача опубликована: 06.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Имеется набор гирь со следующими свойствами:

1) В нем есть 5 гирь, попарно различных по весу.

2) Для любых двух гирь найдутся две другие гири того же суммарного веса.

Какое наименьшее число гирь может быть в этом наборе?

Задачу решили: 36
всего попыток: 56
Задача опубликована: 13.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

У выпуклого многогранника 30 граней, и все грани являются треугольниками. Какое наибольшее число вершин, в которых сходится ровно 3 ребра, может быть у такого многогранника?

+ 1
+ЗАДАЧА 1414. Точки и раскраски стрелок (И. Богданов, Г. Челноков)
  
Задачу решили: 27
всего попыток: 31
Задача опубликована: 09.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Имеются точки с номерами 1, 2, . . . , 12. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем однотонной, если нет двух таких точек A и B, что от A до B можно добраться и только по красным стрелкам, и только по синим. Найдите количество однотонных раскрасок.

Задачу решили: 56
всего попыток: 191
Задача опубликована: 22.03.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

На какое наименьшее количество частей надо разрезать арбуз так, чтобы после того, как будет съедена мякоть - останется ровно 7 корок. (Ломать корки в процессе поедания нельзя, только есть мякоть.)

Задачу решили: 37
всего попыток: 55
Задача опубликована: 10.05.17 08:00
Прислал: admin img
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

В компании из 9 мушкетёров некоторые поссорились и вызвали друг друга на дуэль. Известно, что среди них нет трех таких, что все они должны драться друг с другом. Какое максимальное число мушкетёров при любой комбинации гарантированно не поссорятся друг с другом.

Задачу решили: 26
всего попыток: 38
Задача опубликована: 05.02.18 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Шесть химиков синтезировали 6 новых химических веществ - у каждого есть ровно 1 грамм своего нового вещества. Когда два химика встречаются, они складывают запасы всех имеющихся у них в этот момент веществ, делят их поровну и забирают себе по половине. После 8 таких встреч оказалось, что у каждого из химиков есть не менее чем x грамм каждого вещества. Найдите наибольшее возможное значение x.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.