Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
146
Найти количество натуральных решений уравнения x2+10!=y2.
Задачу решили:
32
всего попыток:
54
Найти максимальное натуральное число N такое, что для некоторого натурального n и нечетного простого p верно: p3n+1+pn+1=Np.
Задачу решили:
39
всего попыток:
76
Найдите положительный остаток при делении 666666777777 на 1464851.
Задачу решили:
54
всего попыток:
111
Найти сумму всех целых n таких, что n2+2n+2 является делителем n3+4n2+4n-14.
Задачу решили:
76
всего попыток:
117
В игре У2В3 за каждый ход можно либо умножить число на 2, либо вычесть 3. За какое минимальное число ходов можно из 11 получить 25.
Задачу решили:
53
всего попыток:
87
При каких значениях а и b многочлен x4+ax3+bx2-8x+1 является полным квадратом. В ответе указать сумму всех возможных значений b.
Задачу решили:
49
всего попыток:
50
Вовочка в кижном магазине покупал только книги, цены на которые заканчивается на 99 коп. В итоге он заплатил 69 руб. 79 коп. Сколько всего книг он купил?
Задачу решили:
54
всего попыток:
57
Пионер Вася каждый год создает число, с помощью которого легко определяет день недели конкретной даты текущего года. Допишите три цифры волшебного числа 033 614 ххх 035 для 2018 года. В ответ введите число, состоящее из трех пропущенных цифр.
Задачу решили:
44
всего попыток:
66
Найдите остаток от деления многочлена (15x996 + 2x335 – 11x3 + 125x + 646) на многочлен (– 2x2 – 2). В ответе укажите сумму коэффициентов остатка.
Задачу решили:
13
всего попыток:
52
Ребра правильного тетраэдра поделены на 6 равных частей. Через все точки деления провели все возможные плоскости параллельные граням тетраэдра. На какое количество частей эти плоскости разбивают пространство?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|