Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
134
всего попыток:
351
Бильярд имеет форму прямоугольного треугольника, один из углов которого равен 30°. Из этого угла в середину противоположной стороны выпущен шар, который при ударах о стенки бильярда отскакивает от них по закону: угол падения равен углу отражения. Сколько раз шар ударится о стенки прежде, чем попадёт в лузу, находящуюся в вершине угла 60°?
Задачу решили:
198
всего попыток:
269
Стороны треугольника — последовательные целые числа. Найдите эти стороны, если известно, что одна из его биссектрис перпендикулярна одной из его медиан. В ответе укажите сумму сторон треугольника.
Задачу решили:
178
всего попыток:
391
Сколькими нулями оканчивается число (20092)! (n! - это произведение всех натуральных чисел от 1 до n). Ответ "много" - не засчитывается!
Задачу решили:
272
всего попыток:
297
В равнобедренной трапеции средняя линия равна 10, а диагонали взаимно перпендикулярны. Найти площадь трапеции.
Задачу решили:
129
всего попыток:
277
Трёх одинаковых роботов расположили в вершинах правильного треугольника со стороной 21 сантиметр. Скорость каждого робота 2 сантиметра в секунду. Роботов настроили так, чтобы после включения каждый гнался за следующим по часовой стрелке (в любой момент вектор скорости направлен на цель). Сколько сантиметров преодолеет каждый из роботов после их одновременного включения и до того, как они все поймают друг друга?
Задачу решили:
202
всего попыток:
345
Сколько различных решений имеет уравнение: 24x6−4x5−78x4+29x3+56x2−42x+8=0?
Задачу решили:
88
всего попыток:
201
Натуральные числа от 1 до 13 записаны в строку. Сколькими способами можно переставить их так, чтобы ни одно число не осталось на своём месте?
Задачу решили:
145
всего попыток:
245
В машинном слове 16 бит (бит — это 0 или 1). Сколько существует слов, в которых никакие две единицы не идут подряд?
Задачу решили:
97
всего попыток:
302
Маршрут автобуса состоит из 12 остановок (включая конечные). Автобус вмещает не более 20 пассажиров. Однажды автобус проехал весь маршрут из конца в конец, останавливаясь на всех остановках. Известно, что не было двух пассажиров, которые вошли, а потом и вышли на одной и той же остановке. Какое наибольшее число пассажиров могло быть перевезено автобусом при этих условиях?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|