Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
28
всего попыток:
94
По кругу написаны 29 ненулевых цифр. Из каждой пары соседних цифр составили двузначное число (при обходе по часовой стрелке первая цифра - число десятков, вторая - число единиц). При этом произведение получившихся 29 чисел является полным квадратом натурального числа. Найти минимальную сумму всех цифр.
Задачу решили:
24
всего попыток:
27
На каждой стороне 10-угольника (не обязательно выпуклого) как на диаметре построили окружность. Может ли оказаться, что все эти окружности имеют общую точку, не совпадающую ни с одной вершиной 10-угольника?
Задачу решили:
37
всего попыток:
55
В компании из 9 мушкетёров некоторые поссорились и вызвали друг друга на дуэль. Известно, что среди них нет трех таких, что все они должны драться друг с другом. Какое максимальное число мушкетёров при любой комбинации гарантированно не поссорятся друг с другом.
Задачу решили:
41
всего попыток:
75
Вова и Маша печатают свои собственные деньги, у каждого свои купюры одного достоинства X и Y, соответственно. Как выяснилось, при помощи комбинации купюр можно сложить почти любые положительные целые числа, кроме 15 чисел. Одним из таких чисел является 18. Найти X+Y.
Задачу решили:
32
всего попыток:
54
Найти максимальное натуральное число N такое, что для некоторого натурального n и нечетного простого p верно: p3n+1+pn+1=Np.
Задачу решили:
39
всего попыток:
76
Найдите положительный остаток при делении 666666777777 на 1464851.
Задачу решили:
53
всего попыток:
87
При каких значениях а и b многочлен x4+ax3+bx2-8x+1 является полным квадратом. В ответе указать сумму всех возможных значений b.
Задачу решили:
33
всего попыток:
43
Окружность радиуса 1 нарисована на шахматной доске так, что целиком содержит внутри белую клетку (сторона клетки равна 1). Причем, центры окружности и клетки не обязательно совпадают. Пусть L1 – сумма длин участков этой окружности, проходящих по белым клеткам, а L – длина всей окружности. Определите точную верхнюю границу отношения L1/ L.
Задачу решили:
19
всего попыток:
45
Одна из 11 монеток обладает странным свойстовом - она может быть либо настоящей, либо фальшивой (более легкой), настоящие монетки весят одинаково. При этом после каждого взвешивания она меняет свое состояние на другое. В каком состоянии она находится в данный момент неизвестно. За сколько взвешиваний на чашечных весах ее можно определить?
Задачу решили:
27
всего попыток:
158
Вовочка называет ненулевую цифру, а Маша вставляет ее вместо одной из звёздочек в выражение **** - **** (разность двух четырехзначных чисел). Цель Вовочки - получить после восьми ходов максимальное значение выражения, а цель Маши - минимальное. Каким будет значение выражения при идеальной игре обоих?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|