img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 35
всего попыток: 200
Задача опубликована: 27.03.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

В некоторых геометрических построениях с помощью циркуля и линейки можно обойтись одним циркулем или одной линейкой.

Рассмотрим множество всех таких натуральных чисел n>1, которые удовлетворяют следующему условию: с помощью одной линейки можно разделить сторону заданного (уже нарисованного) прямоугольника на n равных частей.

Какие натуральные числа 1<n<22 принадлежат этому множеству? Укажите в ответе их сумму.

Задачу решили: 71
всего попыток: 114
Задача опубликована: 17.04.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Несколько (больше одного) человек, каждый из которых вначале имеет 300 долларов, играют в казино. Один раунд игры заключается в следующем. Все игроки отдают по 10 долларов крупье, затем один из них по жребию объявляется проигравшим. Он раздаёт все свои деньги поровну всем остальным и выходит из игры. В итоге оказалось, что у последнего оставшегося игрока капитал вновь составляет 300 долларов. Сколько человек пришло в казино?

Задачу решили: 57
всего попыток: 82
Задача опубликована: 22.05.13 08:00
Прислал: leonid img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: kurtashew (радослав курташев)

Стороны треугольника 192, 120 и 168. Найдите расстояние от центра описанной окружности до ортоцентра (точка пересечения высот).

Задачу решили: 39
всего попыток: 52
Задача опубликована: 12.06.13 12:04
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Сколько существует  1 <= n <= 2013 таких, что существует перестановка a1, a2, ..., an чисел 1, 2, ..., n в которой ни для каких индексов i < j < k не выполняется равенство ak=(ai+aj)/2? 

Задачу решили: 25
всего попыток: 291
Задача опубликована: 19.08.13 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Есть отрезок длины 100. Петя выбирает натуральное число n. Вася и Петя по очереди (первым делает ход Вася) выбирают любой из имеющихся отрезков и делят его на два отрезка произвольной длины. После своего n-го хода Петя из полученных отрезков пробует составить выпуклый многоугольник максимальной целочисленной площади. При каком минимальном n Пете удастся это сделать независимо от игры Васи.

Задачу решили: 22
всего попыток: 155
Задача опубликована: 25.09.13 08:00
Прислал: nauru img
Источник: Санкт-Петербургская олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

У Санта-Клауса, как и обычно это бывает перед Новым Годом есть 8 различных подарков и несколько одинаковых мешков красного цвета (сам он синий). В каждом мешке лежит ровно два предмета(два мешка, два подарка или мешок и подарок). В частности, тот единственный мешок, который Санта-Клаус держит на плече, тоже содержит два предмета. Сколько существует  способов разложить подарки по мешкам?

Задачу решили: 52
всего попыток: 85
Задача опубликована: 30.09.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найти периметр треугольника наибольшей площади со сторонами a, b, c такими, что

0 < a <= 3,5 <= b <= 5,5 <= c <= 7,5

Результат округлить до двух знаков после запятой.

Задачу решили: 26
всего попыток: 66
Задача опубликована: 25.10.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

В окружность Q целочисленного радиуса вписан четырехугольник ABCD, длины всех сторон которого - попарно различные целые числа. Более того, целочислены и длины диагоналей AC и BD.

tt.jpg

Пусть E - точка пересечения касательной к окружности Q, проведенной через точку C, с продолжением стороны AD.  Угол AEC равен углу ACD, и ABCD - четырехугольник минимальной площади, удовлетворяющий всем этим условиям. Найти произведение площадей треугольников DAB и DCB.

Задачу решили: 33
всего попыток: 47
Задача опубликована: 04.11.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В обществе из 15 членов каждое непустое подмножество считается комиссией. В каждой комиссии нужно выбрать председателя, соблюдая правило: если комиссия C является объединением нескольких меньших комиссий, то председателем C должен быть один из председателей этих меньших комиссий. Cколькими способами можно выбрать председателей?

Задачу решили: 46
всего попыток: 60
Задача опубликована: 03.01.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Круг разбили ста хордами так, что никакие три хорды не пересекаются в одной точке, при этом при этом всего было сто точек пересечений хорд.

На какое наибольшее число областей разобьется круг?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.