Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
63
всего попыток:
178
Найдите число всех пар (m,n) целых чисел таких, что 1 ≤ m ≤ 20092009, 1 ≤ n ≤ 20092009 и |m2 + mn − n2| = 1.
Задачу решили:
71
всего попыток:
99
В одном шотландском городке стояла школа, в которой учились ровно 12345678910 школьников. У каждого из них был шкаф для одежды — всего 12345678910 шкафов, причём шкафы были пронумерованы числами от 1 до 12345678910. А ещё в этой школе жили привидения — ровно 12345678910 привидений. Каждый школьник, уходя из школы, запирал свой шкаф, а ночью привидения начинали играть со шкафами, то отпирая, то запирая их. Однажды вечером школьники, как обычно, оставили запертыми все шкафы. Ровно в полночь появились привидения. Сначала 1-ое привидение открыло все шкафы; потом 2-ое привидение закрыло те шкафы, номер которых делился на 2; затем 3-третье привидение поменяло позиции (т. е. открыло шкаф, если он был закрыт, и закрыло — если он был открыт) тех шкафов, номер которых делился на 3; следом за ним 4-ое привидение поменяло позиции тех шкафов, номер которых делился на 4 и т. д. Как только 12345678910-ое привидение поменяло позицию 12345678910-го шкафа — пропел петух и все привидения срочно убрались восвояси. Не скажете ли вы, сколько осталось открытых шкафов после посещения привидений?
Задачу решили:
56
всего попыток:
130
Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 2°. Найдите сумму абсцисс точек пересечения этих прямых с прямой y = 100 − 2x. Ответ округлите до ближайшего целого.
Задачу решили:
67
всего попыток:
209
Среди натуральных чисел n меньших 210 найдите количество таких, что n32 - 1 кратно 210.
Задачу решили:
73
всего попыток:
90
Для натуральных чисел a, m, n (101 ≤ a ≤ 199) выполнены следующие два условия:
Задачу решили:
106
всего попыток:
151
Положительные числа a, b удовлетворяют равенству ab(a + b + 1) = 25. Найдите наименьшее значение, которое может принимать выражение (a + b)(b + 1).
Задачу решили:
44
всего попыток:
60
Найдите количество четверок натуральных чисел (a, b, c, n), для которых выполнены два условия:
Задачу решили:
92
всего попыток:
103
Найти сумму всех натуральных чисел, имеющих ровно 6 делителей, сумма которых равна 3500.
Задачу решили:
80
всего попыток:
98
Если натуральное число разделить на 2, то у него станет на 30 делителей меньше, если поделить на 3, то делителей станет на 35 меньше, а если поделить на 5, то делителей станет меньшена 42 делителя меньше, чем у самого числа. Число имеет вид 2x · 3y · 5z. Чему оно равно?
Задачу решили:
85
всего попыток:
96
Известно, что при некотором a многочлен P(x) = xn-axn−2 для всех n > 2 делится на x-2. Чему равно максимальное значение a?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|