img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 63
всего попыток: 178
Задача опубликована: 21.09.09 12:09
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Найдите число всех пар (m,nцелых чисел таких, что 1 ≤ m ≤ 20092009, 1 ≤ n ≤ 20092009 и |m2 + mn − n2| = 1.

+ 35
  
Задачу решили: 71
всего попыток: 99
Задача опубликована: 12.09.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

В одном шотландском городке стояла школа, в которой учились ровно 12345678910  школьников. У каждого из них был шкаф для одежды — всего 12345678910 шкафов, причём шкафы были пронумерованы числами от 1 до 12345678910. А ещё в этой школе жили привидения — ровно 12345678910 привидений. Каждый школьник, уходя из школы, запирал свой шкаф, а ночью привидения начинали играть со шкафами, то отпирая, то запирая их. Однажды вечером школьники, как обычно, оставили запертыми все шкафы. Ровно в полночь появились привидения. Сначала 1-ое привидение открыло все шкафы; потом 2-ое привидение закрыло те шкафы, номер которых делился на 2; затем 3-третье привидение поменяло позиции (т. е. открыло шкаф, если он был закрыт, и закрыло — если он был открыт) тех шкафов, номер которых делился на 3; следом за ним 4-ое привидение поменяло позиции тех шкафов, номер которых делился на 4 и т. д. Как только 12345678910-ое привидение поменяло позицию 12345678910-го шкафа — пропел петух и все привидения срочно убрались восвояси. Не скажете ли вы, сколько осталось открытых шкафов после посещения привидений?

Задачу решили: 56
всего попыток: 130
Задача опубликована: 02.12.11 08:00
Прислал: admin img
Источник: Турнир городов
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 2°. Найдите сумму абсцисс точек пересечения этих прямых с прямой y = 100 − 2x. Ответ округлите до ближайшего целого.

Задачу решили: 67
всего попыток: 209
Задача опубликована: 13.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Среди натуральных чисел n меньших 210 найдите количество таких, что n32 - 1 кратно 210.

Задачу решили: 73
всего попыток: 90
Задача опубликована: 23.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Для натуральных чисел a, m, n (101 ≤ a ≤ 199) выполнены следующие два условия:
(a) m + n кратно a, 
(b) mn = a (a + 1).
Найдите значение m + n.

Задачу решили: 106
всего попыток: 151
Задача опубликована: 25.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: putout (Дмитрий Лебедев)

Положительные числа a, b удовлетворяют равенству ab(a + b + 1) = 25. Найдите наименьшее значение, которое может принимать выражение (a + b)(b + 1).

Задачу решили: 44
всего попыток: 60
Задача опубликована: 27.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

Найдите количество четверок натуральных чисел (a, b, c, n), для которых выполнены два условия:
(a) na + 2nb = nc
(b) a + b + c ≤ 500.

+ 11
+ЗАДАЧА 700. Делимость (Р. Женодаров)
  
Задачу решили: 92
всего попыток: 103
Задача опубликована: 21.02.12 07:59
Прислал: admin img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: NNN

Найти сумму всех натуральных чисел, имеющих ровно 6 делителей, сумма которых равна 3500.

Задачу решили: 80
всего попыток: 98
Задача опубликована: 26.07.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Если натуральное число разделить на 2, то у него станет на 30 делителей меньше, если поделить на 3, то делителей станет на 35 меньше, а если поделить на 5, то делителей станет меньшена 42 делителя меньше, чем у самого числа. Число имеет вид 2x · 3y · 5z. Чему оно равно? 

Задачу решили: 85
всего попыток: 96
Задача опубликована: 09.08.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Известно, что при некотором a многочлен P(x) = xn-axn−2 для всех n > 2 делится на x-2. Чему равно максимальное значение a?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.