img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 113
всего попыток: 404
Задача опубликована: 18.09.09 00:27
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Найти наименьшее целое число, большее единицы и которое нельзя получить из неё при помощи нескольких последовательных увеличений на целое число процентов от 1 до 100 (причём после каждого увеличения должно получаться также целое число).

Задачу решили: 60
всего попыток: 150
Задача опубликована: 06.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Мальчики и девочки выбрали каждый по натуральному числу, мальчики - a1, a2, ..., a10, девочки - b1, b2, ..., b10. Известно, что для чисел выполняются следующие условия:
разница между числами ai и bj не меньше 3 для любых i ≠ j,
разница между числами любых двух детей одного пола не меньше 2,
b10 наибольшее среди всех чисел.
Найдите, какое наименьшее значение может принимать b10.

Задачу решили: 97
всего попыток: 127
Задача опубликована: 24.07.13 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Когда в конце года учитель подводил результаты, то заметил что только 10 учеников получили в течение года хотя бы одну двойку, 9 учеников получили не менее двух двоек, 8 - не менее трех и т. д., а один ученик получил 10 двоек. Больше 10 двоек никто из учеников не получал. Сколько всего двоек в этом классе получили все ученики?

Задачу решили: 26
всего попыток: 62
Задача опубликована: 22.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Для членов последовательности натуральных чисел a1, a2,... известно, что iaj>jai для всех i>j. a1000=2014. Найдите минимальное возможное значение a500.

Задачу решили: 61
всего попыток: 82
Задача опубликована: 01.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В записи пятизначных чисел N и 2N содержатся все цифры 0, 1, ... , 9. Найти минимальное такое N.

Задачу решили: 47
всего попыток: 70
Задача опубликована: 07.11.14 08:00
Прислал: admin img
Вес: 2
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Пусть p и q простые числа, а r - целое, и такие, что

p(p+3)+q(q+3)=r(r+3). Найдите сумму всех возможных значений p.

Задачу решили: 36
всего попыток: 179
Задача опубликована: 05.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

12 различными натуральными числами заполнили таблицу 4x5. Любые два соседа (числа в клетках с общей стороной) имеют общий делитель больше 1. Если N - наибольшее число в таблице, найти наименьшее возможное значение N.

Задачу решили: 41
всего попыток: 57
Задача опубликована: 12.08.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Десятичное число 20 = 101002= 10100-2 - то есть записывается одинаково в системах счисления по основаниям 2 и -2. Найдите количество все натуральных чисел, меньших 1000, которые обладают таким же свойством.

Задачу решили: 38
всего попыток: 403
Задача опубликована: 04.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Два десятичных числа сложили в "столбик"

  ABC
+ DEF
------
  IJK

Разные буквы означают разные цифры. Сколько возможно вариантов решения для этой записи?

Задачу решили: 60
всего попыток: 74
Задача опубликована: 21.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Kf_GoldFish

Как-то Кролик торопился на встречу с осликом Иа-Иа, но к нему неожиданно пришли Винни-Пух и Пятачок. Будучи хорошо воспитанным, Кролик предложил гостям подкрепиться. Пух завязал салфеткой рот Пятачку и в одиночку съел 10 горшков меда и 22 банки сгущенного молока, причем горшок меда он съедал за 2 минуты, а банку молока — за минуту. Узнав, что больше ничего сладкого в доме нет, Пух попрощался и увел Пятачка. Кролик с огорчением подумал, что он бы не опоздал на встречу с осликом, если бы Пух поделился с Пятачком. Зная, что Пятачок съедает горшок меда за 5 минут, а банку молока за 3 минуты, Кролик вычислил наименьшее время, за которое гости смогли бы уничтожить его запасы.

Чему равно это время? (Банку молока и горшок меда можно делить на любые части).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.