img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 39
всего попыток: 92
Задача опубликована: 13.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: trial (Трибунал Данилов)

Функция f: N→N такова, что f(f(n))+f(n+1)=n+2 для всех натуральных n. Чему равно f(2014)?

Задачу решили: 58
всего попыток: 84
Задача опубликована: 15.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Сколько всего пар натуральных чисел (n,m) таких, что 1 ≤n,m≤100 и nm=mn?

Задачу решили: 36
всего попыток: 56
Задача опубликована: 20.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Стороны треугольника a > b > c являются целыми числами и удовлетворяют условию f(3a/10000)=f(3b/10000)=f(3c/10000), где f(x)=x-[x] ([x] - целая часть x). Найти минимум периметра такого треугольника.

Задачу решили: 26
всего попыток: 62
Задача опубликована: 22.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Для членов последовательности натуральных чисел a1, a2,... известно, что iaj>jai для всех i>j. a1000=2014. Найдите минимальное возможное значение a500.

Задачу решили: 35
всего попыток: 93
Задача опубликована: 29.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

rubik.jpg

Кубик Рубика был в собранном состоянии (все стороны окрашены в одинаковые цвета). Затем сделали некоторое количество оборотов, в результате которых получилось так, что никакие две соседние клетки не окрашены в одинаковые цвета.

Какое минимальное количество поворотов могло быть сделано?

Задачу решили: 61
всего попыток: 82
Задача опубликована: 01.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В записи пятизначных чисел N и 2N содержатся все цифры 0, 1, ... , 9. Найти минимальное такое N.

Задачу решили: 25
всего попыток: 329
Задача опубликована: 03.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Три из четырех сторон четырехугольника имеют длины 3, 4 и 5 и два угла у него прямые. Пусть S - сумма различных площадей всех возможных таких четырехугольников. Чему равна целая часть S?

Задачу решили: 45
всего попыток: 158
Задача опубликована: 10.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найти количество функций f: R→R таких, что для всех действительных x и y верно f(x+y)=f(x)f(y)f(xy).

Задачу решили: 34
всего попыток: 132
Задача опубликована: 15.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Найдите количество пар действительных чисел (a, b) таких, что если c является корнем уравнения x2+ax+b=0, то и c2-2 также является корнем.

Задачу решили: 35
всего попыток: 57
Задача опубликована: 24.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Пусть действительные числа x и y такие, что x2+y2=(x/y+y/x)2. Пусть m - наибольшее, а M - наименьшее возможные числа такие, что верно всегда m≤(x3y3+x2y+xy2+1)/x3y3≤M. Найдите M+m.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.