Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
70
Пять кругов размещены последовательно с одинаковым отступом, красная линия касается крайних левого и праых кругов. Площадь закрашенной зеленым части равна 30, а площадь синей - 5. Найдите площадь одного круга.
Задачу решили:
31
всего попыток:
54
В квадрате размещены 10 окружностей радиуса 1. Какая площадь квадрата закрашена?
Задачу решили:
30
всего попыток:
40
В прямоугольнике, разделенном на 2 квадрата, проведены полуокружности и в результате построений образовался шестиугольник. Какая доля шестиугольника закрашена?
Задачу решили:
29
всего попыток:
32
Пять квадратов касаются вершинами: Найдите отношение площадей треугольников A/B.
Задачу решили:
37
всего попыток:
53
Из 7 равных спичек сложили фигуру (см. рис.) Найти угол α в радианах в виде πp/q. В ответ введите p/q.
Задачу решили:
43
всего попыток:
47
Правильный шестиугольник разделен на 4 треугольника и 3 прямоугольника. Найдите отношение суммы площадей треугольников к сумме площадей прямоугольников.
Задачу решили:
34
всего попыток:
41
В правильный десятиугольник вписана звезда. Пусть S1 - площадь внутреннего синего пятиугольника, S2 - площадь звезды, а S3 - площадь десятиугольника. Найдите (S1+S2)/S3.
Задачу решили:
34
всего попыток:
64
На боковой стороне AC равнобедренного треугольника ABC (|AC|=|BC|) с основанием |AB|=1 взята точка D, для которой |CD|=1, а |BD|2=2. Найдите угог при вершине C. Во сколько раз этот угол меньше полного угла (360 градусов).
Задачу решили:
18
всего попыток:
35
На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек). Сколько существует правильных шестиугольников, которые определяются эти точки как их вершины?
Задачу решили:
30
всего попыток:
36
Прямоугольный параллелепипед 3x4x5 составлен из белых и черных единичных кубиков. Оказалось, что пар соседних кубиков (т. е. имеющих общую грань) разного цвета всего 48, пар соседних кубиков белого цвета всего 51. Сколько пар соседних кубиков черного цвета?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|