img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 25
всего попыток: 76
Задача опубликована: 04.09.20 08:00
Прислал: solomon img
Источник: Математический праздник
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Выпуклый четырехугольник, у которого три стороны равны между собой образуют два смежных угла в сумме 240º. Отношение сумм противоположных углов составляет 11:19. Найти наименьший угол четырехугольника в градусах.

Задачу решили: 21
всего попыток: 70
Задача опубликована: 25.09.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

На боковой стороне равнобедренного треугольника АВС (АС - основание) с целочисленными сторонами отмечена точка D так, что перпендикуляр DE, опущенный на вторую боковую сторону, делит треугольник на две равновеликие части. Найти наименьший периметр треугольника АВС, если длина ВD - целое число и отношение длины основания к длине боковой стороны меньше единицы.

Задачу решили: 35
всего попыток: 42
Задача опубликована: 14.10.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В треугольнике с целочисленными сторонами длина биссектриса угла, образованного двумя сторонами 27 и 15, является целым числом. Найти периметр этого треугольника.

Задачу решили: 19
всего попыток: 29
Задача опубликована: 23.10.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Отношение произведения расстояний от ортоцентра до сторон остроугольного треугольника с целочисленными сторонами разной длины, образующих арифметическую прогрессию, к произведению  расстояний от него до вершин является кубом рациональной дроби. Найти наименьший возможный периметр такого треугольника.

Задачу решили: 36
всего попыток: 45
Задача опубликована: 06.11.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В треугольнике АВС с углами ВАС=30°, АСВ=105° проведена медиана BD. Найти угол ABD в градусах.

Задачу решили: 26
всего попыток: 94
Задача опубликована: 07.12.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На сторонах треугольника АВС с углами, образующими арифметическую прогрессию с разностью 10° (угол А-наибольший), отмечены против вершин соответственно точки А1, В1, С1 так, что |ВС1| = |С1А1| = |А1В1| = |В1С|. Найти угол HAC в градусах, если известно, что Н - точка пересечения высот треугольника А1В1С1

Задачу решили: 31
всего попыток: 55
Задача опубликована: 28.12.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

В треугольнике с целочисленными сторонами периметр численно равен площади. Найти его наибольшее значение.

Задачу решили: 24
всего попыток: 73
Задача опубликована: 03.02.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

В равнобедренном треугольнике высота к основанию H=R+p+r, где p - расстояние между центрами описанной и вписанной окружностей, R, r - их радиусы соответственно, выражены натуральными числами. Найти наименьшее значение высоты H.

Задачу решили: 23
всего попыток: 91
Задача опубликована: 10.02.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В треугольнике АВС на стороне ВС отмечены точки M и N так, что |BM|:|MN|:|NC|=1:1:2, на стороне АС точка К так, что |СК|:|КА|=1:4. Проведены отрезки AM, AN, MK, NK, в результате чего треугольник АВС разделен на 6 треугольников с целочисленными площадями. Найти наименьшую площадь треугольника АВС.

Задачу решили: 32
всего попыток: 41
Задача опубликована: 12.02.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

В правильном десятиугольнике из одной вершины проведены диагонали, которые разбивают его на восемь треугольников. Известно, что отношение площади десятиугольника к площади некоторых треугольников выражается целым числом. Найти наибольшее значение этого отношения.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.