img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 47
всего попыток: 62
Задача опубликована: 20.01.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kazak1952

На стороне AB треугольника ABC находится точка D. На стороне BC того же треугольника находится точка E. Продолжение отрезка DE пересекается с продолжением стороны AC в точке F (точка C находися между точками A и F). Дано: |AB| = 35, |BC| = 30, |CA| = 30, |BD| = 7, |BE| = 9. Найдите длину отрезка CF.

Задачу решили: 43
всего попыток: 86
Задача опубликована: 10.03.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько есть чисел, состоящих из цифр от 1 до 9 (каждая цифра входит 1 раз), которые делятся нацело на 99?

Задачу решили: 29
всего попыток: 64
Задача опубликована: 15.03.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

У четырёх прямоугольников соотношения длин сторон: 1:a1, 1:a2, 1:a3, 1:a4, где a1 < a2 < a3 < a4. – натуральные числа. Углы между диагональю и большой стороной - соответственно равны α1, α2, α3, α4, при этом α1 + α2 + α3 + α4 = π/4. Сколько существует таких наборов натуральных чисел {a1, a2, a3, a4}?

Задачу решили: 23
всего попыток: 31
Задача опубликована: 03.04.19 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В квадрате ABCD помечены середины всех 4-х его сторон. Какое минимальное количество линий нужно провести с помощью линейки без делений, чтобы разделить квадрат на 5 равновеликих частей?

Задачу решили: 25
всего попыток: 30
Задача опубликована: 04.11.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

В каждой из 18-и строк следующей таблицы задана длина стороны равностороннего треугольника - d, и расстояния от некоторой точки на этой же плоскости до трёх вершин треугольника: a, b и c.

#abcd
1 sqrt(3) sqrt(3) sqrt(3) 3
2 sqrt(7) sqrt(421) sqrt(444) 23
3 sqrt(7) sqrt(421) sqrt(513) 23
4 sqrt(13) sqrt(421) sqrt(469) 24
5 sqrt(7) sqrt(463) sqrt(487) 24
6 sqrt(7) sqrt(463) sqrt(559) 24
7 sqrt(13) sqrt(463) sqrt(513) 25
8 sqrt(7) sqrt(507) sqrt(532) 25
9 sqrt(31) sqrt(381) sqrt(556) 25
10 sqrt(7) sqrt(507) sqrt(607) 25
11 sqrt(13) sqrt(507) sqrt(559) 26
12 sqrt(7) sqrt(553) sqrt(579) 26
13 sqrt(7) sqrt(553) sqrt(657) 26
14 sqrt(43) sqrt(421) sqrt(556) 27
15 sqrt(13) sqrt(553) sqrt(607) 27
16 sqrt(7) sqrt(601) sqrt(628) 27
17 sqrt(43) sqrt(421) sqrt(637) 27
18 sqrt(7) sqrt(601) sqrt(709) 27

По этим данным нужно определить для каждой строки, находится ли точка внутри треугольника.

Ответ должен состоять из 18-и нулей и единиц: Каждой строке соответствует "1", если точка находится внутри треугольника, и "0" в противном случае.

Задачу решили: 26
всего попыток: 33
Задача опубликована: 01.05.21 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2156.
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: forest (Александр Куц)

Определителем таблицы из 9-и чисел:
a b c
d e f
g h i
называется значение выражения:
a*e*i + b*f*g + c*d*h – c*e*g – a*f*h – b*d*i.

Дано число: n = 10100 + 1. Рассмотрим всевозможные таблицы указанного выше вида, когда каждый из 9-и чисел равен либо 1, либо n. Пусть их наибольший определитель равен x. Найдите сумму цифр числа x.

Задачу решили: 20
всего попыток: 48
Задача опубликована: 22.12.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

7 первых натуральных чисел, кратных 7-и, расположили в каком-то произвольном порядке в одну строку без пробелов, например так: 7142128354249.

Соединив первую и последнюю цифры, получили замкнутую цепочку из 13-и цифр (смотрите рисунок).

Числа по кругу 3

Затем разъединили какие-то две соседние цифры и снова натянули цепочку в одну строку. Получилось 13-значное число. На рисунке это число: 2835424971421.

Какое наименьшее возможное число?

Замечание: Наши цифры как игрушка «Ванька-встань-ка» - сколько бы их ни поворачивать, они всегда смотрят на нас вертикально.

Задачу решили: 16
всего попыток: 38
Задача опубликована: 02.03.22 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2295
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек).

Шестиугольники на решетке

Сколько попарно неконгруэнтных правильных шестиугольников определяют эти точки?

Задачу решили: 22
всего попыток: 26
Задача опубликована: 29.07.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Если стороны треугольника равны a, b, c, и радиусы вписанной и описанной окружностей равны r и R, то выражение:
((a+b+c)/2)2 - 3r2 - 12Rr, можно представить как многочлен от трёх переменных a, b, c.

Обозначим:
B - произведение коэффициентов этого многочлена.
A - сумма абсолютных величин этих же коэффициентов.
Найдите A+B.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.