img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Zoxan решил задачу "Функции и графики" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 54
всего попыток: 102
Задача опубликована: 04.12.09 23:42
Прислал: Vkorsukov img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В треугольнике АВС из вершины А проведены две прямые, пересекающие основание ВС. При этом диаметры вписанных окружностей трёх образовавшихся треугольников равны между собой. Найти отношение  высоты, опущенной из вершины А на сторону ВС, к диаметру этих окружностей, если величина угла В — 70°, а С — 80°. Ответ округлите до ближайшего целого числа.

Задачу решили: 19
всего попыток: 42
Задача опубликована: 16.03.11 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Чевианой называют отрезок соединяющий вершину треугольника с его противоположной стороной или её продолжением. Нас будут интересовать чевианы, которые делят треугольник на два треугольника с равными вписанными окружностями. Найдите площадь треугольника, в котором длины таких чевиан равны: 996, 1490, 2685. Результат округлите до ближайшего целого числа.

Задачу решили: 43
всего попыток: 232
Задача опубликована: 13.07.11 08:00
Прислал: Vkorsukov img
Источник: На основе задач 595 и 603; совместно с volina...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: ROMARINA (Lyubov Dudina)

В оранжерее на космической станции в виде прямоугольника 23×31 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 713 бабочек перелетела по диагонали через один цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.

Задачу решили: 48
всего попыток: 351
Задача опубликована: 07.09.11 08:00
Прислал: Vkorsukov img
Источник: Задача 628
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

На окружности отмечены четыре точки A, B, C и D так, что хорды AC и BD перпендикулярны друг другу, а AB=4 и CD=13. Сколько различных целочисленных значений может принимать площадь четырёхугольника ABCD с такими условиями?

Задачу решили: 21
всего попыток: 339
Задача опубликована: 04.05.15 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Внутреннюю точку выпуклого четырёхугольника соединили с серединами всех его сторон. Четырёхугольник разделился на четыре четырёхугольника.  Два из них имеют площади 311 и 183. Какую минимальную целочисленную площадь мог иметь исходный четырёхугольник?

Задачу решили: 27
всего попыток: 273
Задача опубликована: 10.02.17 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Дано, выпуклый четырёхугольник ABCD имеет целочисленную площадь, а длины его сторон AB, BC, CD, DA равны 11, 5, 10, 14, соответственно. Сколько различных значений может принимать площадь таких четырёхугольников?

Задачу решили: 48
всего попыток: 62
Задача опубликована: 30.04.18 08:00
Прислал: Vkorsukov img
Источник: Euclidea
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Две окружности разных радиусов, расположены так, что центр меньшей находится на большей окружности, как на рисунке.

fb16.png

Известно, что длина отрезка BD равна длине BC. Точка A - центр большей окружности. Найти длину отрезка AD, если радиусы окружностей равны 5 и 3.

Задачу решили: 19
всего попыток: 84
Задача опубликована: 19.06.20 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Внутри равностороннего треугольника, включая и его стороны, выбрана произвольная точка. Из отрезков равных расстоянию от этой точки до вершин треугольника составляется новый треугольник. Сколько различных целочисленных значений в градусах может принимать наибольший угол нового треугольника?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.