img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 87
всего попыток: 196
Задача опубликована: 13.08.09 00:31
Прислал: Dremov_Victor img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Andreo (Андрей Желудев)

Натуральные числа от 1 до 13 записаны в строку. Сколькими способами можно переставить их так, чтобы ни одно число не осталось на своём месте?

Задачу решили: 93
всего попыток: 191
Задача опубликована: 13.09.09 11:18
Прислал: Dremov_Victor img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

Через одну и ту же точку провели 2009 окружностей. На какое наибольшее число частей они могут разбить плоскость?

Задачу решили: 110
всего попыток: 280
Задача опубликована: 21.12.11 08:00
Прислал: Dremov_Victor img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: leonidr321 (Леонид Розенблат)

Цифры от 0 до 9 (каждую по одному разу и число не может начинаться с нуля) выписывают слева направо в таком порядке, чтобы в любой момент число, образованное выписанными цифрами, было составным. Какое наименьшее число можно получить таким образом?

Задачу решили: 61
всего попыток: 157
Задача опубликована: 22.02.12 08:00
Прислал: Dremov_Victor img
Источник: Японская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Точка М - середина стороны BC треугольника ABC. Известно, что\angle MAC = 15^\circ. Найдите максимальное значение \angle ABC. Ответ дайте в градусах.

Задачу решили: 62
всего попыток: 117
Задача опубликована: 27.02.12 08:00
Прислал: Dremov_Victor img
Источник: Японская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Пусть n > 2 целое число. Найдите наибольшее K и наименьшее G, при которых для любых положительных чисел a1, a2, ..., an справедливо следующее неравенство:

K <
\frac{a_1}{a_1 + a_2} + 
\frac{a_2}{a_2 + a_3} + \cdots
\frac{a_n}{a_n + a_1} <
G

Чему равно K+G для n = 100.

 

Задачу решили: 45
всего попыток: 110
Задача опубликована: 29.02.12 08:00
Прислал: Dremov_Victor img
Источник: Японская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Множество Q(n) состоит из слов длины 2n, в записи которых ровно n букв A и n букв B, обладающих следующим свойством: для каждого k ≤ 2n среди первых k букв количество букв B не меньше, чем букв A. Найдите мощность Q(8).

Задачу решили: 76
всего попыток: 113
Задача опубликована: 18.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Найдите количество 11-элементных подмножеств множества {1, 2, ... , 23}, сумма элементов которых равна 194.

Задачу решили: 35
всего попыток: 81
Задача опубликована: 20.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

На окружности O выбраны точки A, B, C, для которых 
AB = 18, \angle ABC = 59^\circ, \angle CAB = 3^\circ.
На прямой, касающейся окружности O в точке A, выбраны точки D, E, такие что
\angle DAC < 90^\circ, DA = 12, AE = 18, DE = 30.
Прямые BD и CE пересекают окружность O в точках K и L, прямая KL пересекает прямую DE в точке P, причем точка E лежит между P и A. Найдите длину отрезка AP.

Задачу решили: 39
всего попыток: 295
Задача опубликована: 23.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Найдите наименьшее натуральное n, такое что существует функция f:{1,2,...,20} → {1,2,...,n}, удовлетворяющая следующему условию: 2·f(k+1)<f(k)+f(k+2), k=1,2,...,18.

Задачу решили: 44
всего попыток: 79
Задача опубликована: 25.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Четырёхугольник ABCD вписан в окружность O, AB = 24, AD = 16, \angle BAC = \angle DAC. Прямые AC и BD пересекаются в точке E, BE = 18. Прямая, проходящая через точку D и перпендикулярная AC пересекает окружность O в точке F(\ne D), прямые FC и AB пересекаются в точке K, AC и DF пересекаются в точке L. Найдите длину отрезка KL.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.