Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
64
Отличное от нуля число назовём оригинальным, если оно равно целой части произведения двухсот и арксинуса разности двух его некоторых цифр. Чему равна сумма всех оригинальных чисел?
Задачу решили:
33
всего попыток:
52
Длины сторон треугольника равны 7, 8, 13 см. На большей и меньшей сторонах внешним образом построены правильные треугольники. Найти расстояние между центрами правильных треугольников. Ответ введите в миллиметрах, округлив до ближайшего целого числа.
Задачу решили:
25
всего попыток:
49
Площади квадратов BKLM и ABCD соответственно равны 2 и 25. Угол CBK тупой. Точки A, D, L, M лежат на окружности, точка B общая. Найдите тангенс угла ABK.
Задачу решили:
34
всего попыток:
50
Внутри окружности расположены 2 квадрата площадью 8 и 3. Точки Т, М, Д, Е лежат на окружности, точка А – общая у квадратов (см. рисунок). Чему равен минимальный целочисленный радиус круга, в который можно поместить этот рисунок?
Задачу решили:
17
всего попыток:
75
В правильном целочисленном треугольнике АВС есть такая точка внутри, что целочисленные расстояния a, b, c до его вершин образуют арифметическую прогрессию и НОД(a,b,c) =1. Найти сторону третьего по величине такого треугольника.
Задачу решили:
31
всего попыток:
37
В равнобедренном треугольнике ABC с основанием |AC|=2, высотой |BD|=2+√3 вписаны квадраты KLMN и DPRQ. Найти отношение площадей квадратов KL MN и DPRQ.
Задачу решили:
25
всего попыток:
48
Администратор сайта проводит конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно предлагают одну свою задачу. После публикации задач все участники дают оценку каждой задаче, кроме своей. В конкурсе приняли участие 6 человек. Каждый участник за лучшую (по его мнению) задачу давал 5 баллов, за следующую 4 балла, и т.д., за пятую - 1 балл. По каждой задаче баллы суммировались - это рейтинг задачи. Оказалось, что все рейтинги различны. А) Могли ли все рейтинги быть простыми числами? Б) Могла ли сумма четырёх наибольших рейтингов быть в три раза больше суммы остальных рейтингов? В) Какова минимальная сумма третьего и четвёртого по величине рейтингов? В качестве ответа на вопросы А), Б) вводите 1, если «Да» и 0, если «Нет»; на вопрос В) вводите сумму рейтингов. Например, ответ 1029 означает: А) «Да», Б) «Нет», В) 29.
Задачу решили:
30
всего попыток:
35
Середины противоположных сторон жёлтого правильного шестиугольника соединены непрерывной ломаной со звеньями от 1 до 20 и углами между ними ∏/3, а середины противоположных сторон синего правильного шестиугольника соединены аналогичной ломаной со звеньями от 1 до 21. Найти отношение стороны желтого шестиугольника к стороне синего.
Задачу решили:
20
всего попыток:
64
Из вершины угла в 120 градусов равнобедренного треугольника выходят два луча под углом 60 градусов между ними и делят основание на три различных целочисленных отрезка. Найти основание третьего по величине такого треугольника.
Задачу решили:
24
всего попыток:
30
Найдите количество хорд с концами в целочисленных точках параболы y = x2 при |x| <= 9*12 (=108)? В ответе укажите это количество хорд, делённое на 12. P.S. С Днем Рождения, Николай Иванович!
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|