Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
47
Бесконечная последовательность квадратов со сторонами 1, 2, 3, ... через диагональные вершины "нанизаны" на ось Оy так, как показано на рисунке. Докажите, что все остальные вершины этих квадратов лежат на некоторой параболе, и выясните, какую часть внутренней области этой параболы занимают квадраты.
Задачу решили:
17
всего попыток:
96
Одно из боковых ребер правильной шестиугольной призмы совпадает с диагональю куба, а противоположное ему ребро призмы содержит вершину куба. Найдите объем общей части этих тел, если ребро куба равно 1.
Задачу решили:
25
всего попыток:
35
Имеются две модели октаэдров: каркасная и бумажная. Число k – это отношение длины ребра каркасного октаэдра к длине ребра бумажного октаэдра. Ребра каркасного октаэдра считать бесконечно тонкими. При каком наименьшем значении k бумажный октаэдр можно вставить внутрь каркасного октаэдра? В ответе укажите квадрат этого отношения.
Задачу решили:
30
всего попыток:
84
Одна из вершин куба симметрично отражена относительно центра каждой его грани. Полученные таким образом шесть точек являются вершинами выпуклого многогранника. Найдите его объём, если объём куба равен 36.
Задачу решили:
43
всего попыток:
69
Два благородных крокодильчика начинают поедать с двух концов единичный отрезок по следующей схеме: первый со своего конца откусывает 1/2 отрезка, второй со своего конца откусывает 1/3 оставшейся части отрезка, затем первый откусывает 1/4 остатка, второй откусывает 1/5 остатка, и т.д. Какую часть отрезка съест первый крокодильчик? Ответе укажите в процентах, округлив его до целого.
Задачу решили:
18
всего попыток:
32
В кубе ABCDA1B1C1D1 концы отрезка KF лежат на диагоналях AD1 и B1C и он параллелен плоскости основания ABCD. Точка М – точка пересечения отрезка KF с диагональной плоскостью A1BCD1. Геометрическое множество точек М образует линию, которая делит прямоугольник A1BCD1 на две части. Найдите отношение площади меньшей части к площади большей.
Задачу решили:
27
всего попыток:
80
В кубе ABCDA1B1C1D1 с ребром 6 проведен отрезок, соединяющий вершину A куба с центром грани A1B1C1D1. Этот отрезок начинает непрерывно «скользит» своими концами по двум скрещивающимся диагоналям AC и B1D1 противоположных граней куба, не меняя своей длины. Двигаясь таким образом, отрезок задает линейчатую поверхность, изображенную на рисунке. Объём тела, ограниченного этой поверхностью, будет иметь вид kπ. В ответе укажите числовой множитель k.
Задачу решили:
25
всего попыток:
88
При некоторых значениях k на синусоиде y= ksinx можно расположить квадрат, все вершины которого лежат на синусоиде, а его центр совпадает с началом координат. Один из квадратов изображен на рисунке. Сколько таких квадратов существует при k =14?
Задачу решили:
24
всего попыток:
51
На рисунке изображен октаэдр, вписанный в куб. Две его вершины О1 и О2 лежат в центрах противоположных граней куба, а вершины A, B, C и D – середины ребер куба, перпендикулярных этим граням. У куба три пары противоположных граней, поэтому в него можно вписать таким образом три октаэдра. Какую часть куба составляет объем общей части этих трех октаэдров.
Задачу решили:
20
всего попыток:
32
В куб ABCDA1B1C1D1 вписан правильный тетраэдр D1AB1C. Куб, вместе c тетраэдром, вращается вокруг диагонали BD1 куба. При этом образуются два тела вращения: одно задается вращением куба, другое – вращением тетраэдра. Найдите объёмы этих двух тел вращения, и в ответе укажите отношение меньшего объёма к большему.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|